InterBase
QLI Reference

Disclaimer

Borland International, Inc. (henceforth, Borland) reserves the right to make changes
in specifications and other information contained in this publication without prior
notice. The reader should, in all cases, consult Borland to determine whether or not any
such changes have been made.

The terms and conditions governing the licensing of InterBase software consist solely
of those set forth in the written contracts between Borland and its customers. No
representation or other affirmation of fact contained in this publication including, but
not limited to, statements regarding capacity, response-time performance, suitability
for use, or performance of products described herein shall be deemed to be a warranty
by Borland for any purpose, or give rise to any liability by Borland whatsoever.

In no event shall Borland be liable for any incidental, indirect, special, or consequential
damages whatsoever (including but not limited to lost profits) arising out of or relating
to this publication or the information contained in it, even if Borland has been advised,
knew, or should have known of the possibility of such damages.

The software programs described in this document are confidential information and
proprietary products of Borland.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subdivision (b) (3) (ii) of the Rights in Technical
Data and Computer Software clause at 52.227-7013.

© Copyright 1993 by Borland International, Inc. All Rights Reserved. InterBase, GDML,
and Pictor are trademarks of Borland International, Inc. All other trademarks are the
property of their respective owners.

Corporate Headquarters: Borland International Inc., 100 Borland Way, P. O. Box
660001, Scotts Valley, CA 95067-0001, (408) 438-5300. Offices in: Australia, Belgium,
Canada, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America,
Malaysia, Netherlands, New Zealand, Singapore, Spain, Sweden, Taiwan, and United
Kingdom.

Software Version: V3.0

Current Printing: October 1993
Documentation Version: v3.0.1

Reprint note

This documentation is a reprint of InterBase V3.0 documentation. It contains most of
the information from InterBase Previous Versions Documentation Corrections and In-
terBase Version 3.2 Documentation Corrections and a new index. For information on
features added since InterBase Version V3.0, consult the appropriate release notes.

Table Of Contents

Preface

Who Should Read this Book ix
Using this Book e b
Text Conventionst e et e xi
Syntax Conventions. i e xii
InterBase Documentation e xiii
Introduction

L3 a7 1 1-1

Qli Expressions

OVeIVIEW. . o 2-1
Boolean Expression e 2-2
Any Condition i 2-2
Between Condition 2-3
Comparison Condition i, 2-3
Containing Condition 2-4
Matching Condition i 2-5
Matching Using Condition 2-6
Missing Condition 2-7
Starting With Condition 2-7
Unique Condition, 2-8
Predicate. e 2-9
Between Condition e 2-9
Compare Condition0t 2-10
Exists Condition 2-10
In Condition i e 2-11

Vi

Like Conditiont e 2-11

Record Selection Expression (RSE). 2-13
First Clauseo e e 2-13
Relation Clause i e e e 2-14
Cross Clause (Join)t i e e e 2-15
With Clause e e e e e 2-16
Reduced Clause (Project)ttt 2-17
Sorted Clause it e 2-17

Scalar EXpression. e 2-19
Database Field Expression 2-19
Constant Expression it 2-21
Statistical Function 2-22

Select EXpPressionttt e 2-23
Select Clause e e 2-23
Where Clauset e 2-24
Grouping Clauseu ittt e e 2-25
Having Clause i et e e e e 2-26

Value EXpressionttt et e 2-27
Arithmetic EXpressionttt 2-27
Database Field Expression, 2-28
First Expression i e 2-29
Format Expression i 2-29
Numeric Literal Expression i, 2-30
Quoted String Expression 2-30
Running Expression i 2-31
Statistical Expressiont 2-31
Username Expression 2-32

Qli Statements and Commands

L0 =Y 2 1= 3-1
ADOrt . . 3-3
ACCEDt . o 3-4
Alter Table 3-6

Begin-End. e 3-10
Commit . . .o e 3-12
Copy Procedure i e 3-14
Create Database.t i e e e 3-15
Create Index. e 3-17
Create Table. i e et 3-19
Create View ... i i e 3-21
Declareo e e 3-23
Define Database. i e 3-26
Define Field i e e 3-28
DefineIndex. i e e 3-30
Define Procedure i e 3-33
Define Relation. i e e e 3-36
Delete . ..o e e 3-39
Delete Metadata. i e 3-41
Delete Procedure it e e e e 3-43
Drop Database 3-45
DropIndexo e 3-46
Drop Table o e e 3-47
Drop ViewW. . .o e 3-48
Edit. .. o e 3-49
Edit Proceduret e 3-51
Erase. e 3-53
EXit . e e 3-55
Field Attributesot i e e e e 3-56

Datatype Clauseco i i e 3-56

Edit String Clause e 3-58

Query Name Clausec... i, 3-61
Finish e 3-63
FOr. e e 3-65
For Form. e 3-67
GTant. . . oottt e e 3-69

vii

viii

I ElSe .« ot 3-74
Insert 3-79
Last .o 3-82
Modify. . .o 3-84
Modify Fieldo 3-86
Modify Index.ot 3-87
Modify Relation 3-89
Prepare, 3-91
Print . .., 3-93
QUIt. . o 3-98
Ready 3-100
Rename Procedure. 3-104
Repeat.o 3-106
Report 3-108
Restructure. 3-113
Revoke. 3-114
Rollback i 3-116
Select. . .o 3-118
] 3-121
Shell ... e 3-124
ShOW . o . 3-125
O DAWIL . .« o ottt 3-130
173 Y 3-131
Then .. 3-133
Updateot 3-134

Preface

This book contains information on the InterBase GDML and SQL expressions, state-
ments and commands you can use in gli.

Who Should Read this Book

You should read the Qli Reference manual if you want to use the interactive versions
of InterBase’s data manipulation languages. This book is a companion to the Qli Guide
and assumes you have read that book, or are experienced with InterBase.

Using this Book

Using this Book

This book contains the following chapters:

Chapter 1 Introduces the book.
Chapter 2 Discusses the expressions you can use in qli.
Chapter 3 Discusses the GDML and SQL statements and com-

mands you can use in qli.

Text Conventions

Text Conventions

This book uses the following text conventions.

boldface

italic

fixed width font

UPPER CASE

Indicates a command, option, statement, or utility. For
example:

¢ Use the commit command to save your changes.
e Use the sort option to specify record return order.

* The case_menu statement displays a menu in the
forms window.

e Use gdef to extract a data definition.

Indicates chapter and manuals titles; identifies file-
names and pathnames. Also used for emphasis, or to
introduce new terms. For example:

¢ See the introduction to SQL in the Programmer’s
Guide.

* (/usr/interbase/lock_header)

* Subscripts in RSE references must be closed by
parentheses and separated by commas.

¢ C permits only zero-based array subscript
references.

Indicates user-supplied values and example code:
¢ Srun sysS$Ssystem:iscinstall

e« add field population_1950 long

Indicates relation names and field names:

¢ Secure the RDB$SECURITY_CLASSES system
relation.

* Define a missing value of X for the
LATITUDE_COMPASS field.

xi

Syntax Conventions

Syntax Conventions

This book uses the following syntax conventions.

{braces}

[brackets]

fixed width font

commalist

italics

Xii

Indicates an alternative item:

® option::= {verticall|horizontal]|
transparent}

Indicates an optional item:
* dbfield-expression[not]missing

Indicates user-supplied values and example code:
* 3$run sys$system:iscinstall
* add field population_1950 long

Indicates that the preceding word can be repeated to
create an expression of one or more words, with each
word pair separated by one comma and one or more
spaces.

For example,
field_def-commalist
resolves to:
field_def[,field_def[,field_def]...]
Indicates syntax variable:

create_blob blob-variable in
dbfield-expression

Separates items in a list of choices.

Indicates that parts of a program or statement have
been omitted.

InterBase Documentation

InterBase Documentation

The InterBase Version 3.0 documentation set contains the following books:

Getting Started with InterBase INT0032WW2179A) provides an overview of InterBase
components and interfaces.

Database Operations (INT0032WW2178D) describes how to use InterBase utilities to
maintain databases.

Data Definition Guide (INT0032WW2178F) describes how to create and modify
InterBase databases.

DDL Reference (INT0032WW2178E) describes the function and syntax for each of the
data definition language clauses and statements. It also lists the standard error
messages for gdef.

DSQL Programmer’s Guide (INT0032WW2179C) describes how to program with
DSQL, a capability for accepting or generating SQL statements at runtime.

Forms Guide INT0032WW2178A) describes how to create forms using the InterBase
forms editor, fred, and how to use forms in gli and GDML applications.

Programmer’s Guide (INT0032WW2178I) describes how to program with GDML, a
relational data manipulation language, and SQL, an industry standard language.

Programmer’s Reference (INT0032WW2178H) describes the function and syntax for
each of the GDML and InterBase supported SQL clauses and statements. It also
lists the standard error messages for gpre.

Qli Guide (INT0032WW2178C) describes the use of qli, the InterBase query language
interpreter that allows you to read to and write from the database using interactive
GDML or SQL statements.

Qli Reference (INT0032WW2178B) describes the function and syntax for each of the
data definition, GDML, and SQL clauses and statements that you can use in qli.

Sample Programs (INT0032WW2178G) contains sample programs that show the use
of InterBase features.

Master Index (INT0032WW2179B) contains index entries for the entire InterBase Ver-
sion 3.0 documentation set.

xiii

Chapter 1
Introduction

This chapter describes how this manual is organized.

Overview

The Qi Reference contains information about the GDML and SQL expressions, com-
mands, statements and clauses you can use in gli.

Each entry has the following sections:

Function, which describes what the statement,command or expression does
Syntax, which provides a complete diagram including all options
Options, which describes each option of the statement, command, or expression

Example, which shows how to use the statement, command, or expression in a pro-
gram

Troubleshooting, which lists error messages and suggests corrective actions

Introduction 11

Overview

¢ See Also, which refers you to related statements or expressions, or other sources
of related information.

In addition, some entries contain a section describing usage. The usage section pro-
vides an in-depth discussion of how or why to use a GDML or SQL statement, command
or expression.

1-2 Introduction

Chapter 2
Qli Expressions

This chapter describes the following expressions you can use in gli.

Overview

Qli uses the following expressions:

Boolean expression, which evaluates to true, false, or missing.
Predicate, which selects the records to be affected by a statement.

Record selection expression, which specifies the search and delivery conditions for
record retrieval.

Scalar expression, which is a symbol or string of symbols to calculate a value.

Select expression, which specifies the search and delivery conditions for record re-
trieval.

Value expression, which is a symbol or string of symbols from which
InterBase calculates a value.

Qli Expressions 2-1

Boolean Expression

Boolean Expression

Function A Boolean expression evaluates to true, false, or missing. It
describes the characteristics of a single value expression (for
example, a missing value) or the relationship between two value
expressions (for example, x is greater than y).

Compound Boolean expressions are evaluated in the following
order: not, and, and then or.

Syntax boolean-expression ::={[not]conditional-
expression]
conditional-expression and conditional-
expression|

conditional-expression or conditional-expression}

conditional-expression ::=
{any| between| comparisonl|containing|mi ssingl
matching|starting with|unigue}

These Boolean expressions are described in the following sections

¢ Any condition

¢ Between condition

¢ Comparison condition

* Containing condition

* Missing condition

* Matching condition

* Matching/using condition
* Starting with condition

¢ Unique condition

Any Condition
Function The any condition tests for the existence of at least one qualify-

ing record in a relation or relations. This expression is true if the
record stream specified by a RSE includes at least one record. If

2-2 Qli Expressions

Syntax

Example

Boolean Expression

you add not, the expression is true if there are no records in the
record stream.

Use any if you want to establish that a record exists. As soon as
InterBase finds one record that meets the search criteria, it
stops.

[not]any rse

The following query prints the name of any state for which there
are cities stored:

QLI> for s in states with any c¢ in cities over -
CON> state
CON> print s.state_name

Between Condition

Function

Syntax

Example

The between condition tests whether a value expression occurs
between two other value expressions.

value-expression [not] {between | bt}
value-expression-1 [and] value-expression-2

The following query looks for cities with populations between
100,000 and 250,000:

QLI> for cities with population between 100000 -
CON> and 250000
CON> print city, state, population

Comparison Condition

Function

Syntax

The comparison condition describes the relationship between
two value expressions.

value-expression-1 relational-operator value-
expression-2

Qli Expressions 2-3

Boolean Expression

relational-operator
One of the operators listed in the following table:

Operator Relationship
eqor =or == Equal
ne or <>or != Not equal
gtor> Greater than
ge or >= Greater than or equal
Itor < Less than
le or <= Less than or equal
Example The following query looks for cities with populations less than
50,000:

QLI> for cities with population < 50000
CON> print city, state, population

Containing Condition

Function The containing condition conducts a case-insensitive search for
the presence of a substring anywhere in a value-expression. It
evaluates to true if the substring is contained in the expression.
If the value of the value expression is missing, the result is miss-
ing.

The containing condition also works with blobs, searching every
segment in a blob for an occurrence of the quoted string.

Qli recognizes ct and cont as synonyms for containing.

Syntax value-expression-1 [not] {containing|ct|cont}
value-expression-2

Example The following query looks for cities with the substring “ville”
somewhere in their name:

QLI> print cities with city containing ‘ville’

2-4 Qli Expressions

Boolean Expression

The following query prints states that entered the Union in Jan-
uary:

QLI> print states with statehood containing ’‘JAN’

The following query looks for a COMMENTS entry in the
CROSS_COUNTRY relation that contains the substring “var-
ied”:

QLI> for cross_country with comments -

CON> containing ’‘varied’

CON> print area_name -

CON> | ’': ' | city | ', ' | state (-), skip,
CON> col 10, comments (-)

Matching Condition

Function

Syntax

Examples

The matching condition conducts a case-sensitive search for the
presence of a substring containing the wildcard characters * and
?. The asterisk matches an unspecified run of characters, while
the question mark matches a single character.

Note

If you have set matching language using the set match-
ing language command, the definitions in that pattern
are used in place of the * and ?. This may affect case-sen-
sitivity.

value-expression-1 [not] matching value-
expression-2

The following query looks for cities with the string “ton” following
any number of other characters:

QLI> print cities with city matching ‘*ton*’

The following query looks for states with the state abbreviation
equal to “N” followed by exactly one character:

QLI> print states with state matching 'N?’

Qli Expressions 2-5

Boolean Expression

Matching Using Condition

Function

Syntax

Options

2-6

The matching using condition lets you define your own wildcard
search characters.

matching value-expression using ’‘control-string’

control-string ::= [prequalifier]|[definition-
commalist] [postqualifier]

pregualifier ::= [-S(|+S(]

definition ::= wildcard=definition-character
[definition-character...]

postqualifier ::= [)]

value-expression
Specifies the expression for which the substring search occurs.

prequalifier

The prequalifier string -S(disables case sensitivity of the
value-expression in the matching clause. The prequalifier
string +S(enables case sensitivity of the value-expression in
the matching clause.

definition
Specifies the character (punctuation or symbol) you want to

define and sets it equal to one or more of the characters in the
following table:

Definition Character Operation

? Matches any single character

[1 Defines a class of character

* Modifies previous definition or
class: indicates zero or more occur-
rences

@ Treats the next character as literal

~ Excludes the following character or

class of characters

Qli Expressions

Boolean Expression

A class of characters can be a list or range of characters that
you specify inside the square brackets. For example, the range
[0-9] or list [0123456789] represents any digit. If you define a
class with &=[0-9A-Za-z], the ampersand represents all alpha-
numeric characters. The class definition of [~0-9] means any
non-numerals.

postqualifer
The postqualifier) is optional.

Example The following example searches for cities that have “ton” some-

where in their name. The matching/using clause defines "+" as
zero or more occurrences of any single character:

for ¢ in cities with c.city matching ‘+ton+’ using
‘+=?*’ print city

Missing Condition

Function The missing condition tests for the absence of a value in an
expression. It is true if the value of value-expression is missing.

Unless you specify otherwise in the field’s definition, qli prints
blanks for numbers, characters, and dates, and nothing for blobs.
See the Data Definition Guide for more information about defin-
ing alternate missing values.

Syntax value-expression [is] [not] {missing|null}
Example The following query looks for states that have a missing value for
the CAPITAL field:

QLI> print states with capital missing

Starting With Condition

Function The starting with condition conducts a case-sensitive search for
the presence of a substring at the beginning of a value expres-

Qli Expressions 2-7

Boolean Expression

Syntax

Example

sion. It evaluates to true if the first characters of the value
expression match the substring.

value-expression-1 [not] {startingl/st} [with]
value-expression-2

The following query looks for cities that start with the string
“New”:

QLI> print states with state_name -
CON> starting with ’'New’

Unique Condition

Function

Syntax

Example

Troubleshooting

See Also

2-8

The unique condition tests for the existence of exactly one qual-
ifying record. This expression is true if the record stream speci-
fied by the RSE consists of only one record. If you add not, the
condition is true if there is more than one record in the record
stream or if the record stream is empty. The format of the unique-
condition follows:

[not] unique rse

The following query prints the names of states that have only one
ski area:

QLI> for s in states with unique ski in -
CON> ski_areas over state
CON> print s.state_name

See the discussion of errors and error handling in Chapter 1 of
the Qli Guide.

See the entries in this manual for:

¢ value expression
* RSE
¢ predicate

Qli Expressions

Predicate

Function

Syntax

Predicate

The predicate clause is used to select the records to be affected by
the statement. It is used in the where-clause of the SQL state-
ments delete and update, and in the select-expression.

predicate::={condition|condition and predicate]
condition or predicatel

not predicate}

condition: :={between-condition|compare-condition]|
exists-conditionl|like-condition|
null-condition| (predicate)}

The following sections describe the five conditions of the predi-
cate clause:

* Between condition

¢ Compare condition

¢ Exists condition

* Like condition

¢ Null condition

Between Condition

Function

Syntax

Example

The between-condition specifies an inclusive range of values to
match.

database-field [not] between scalar-expression-1
and scalar-expression-2

The following query displays the CITY and STATE fields from
cities with populations between 100,000 and 125,000:

QLI> select city, state from cities where -
CON> population between 100000 and 125000

Qli Expressions 2-9

Predicate

Compare Condition

Function

Syntax

Example

The compare-condition describes the characteristics of a single
scalar expression (for example, a missing or null value) or the
relationship between two scalar expressions (for example, x is
greater than y).

{scalar-expression comparison-operator scalar-
expression|scalar-expression comparison-operator
(column-select-expression) | scalar-expression is}
[not] null

comparison-operator::={=|"=l<|"<|l<=|">|>=}

column-select-expression: := select [distinct]
scalar-expression from-clause [where-clause]

The result of the following query displays all fields from CITIES
records for which the POPULATION field is not missing:

QLI> select * from cities where
CON> population is not null;

Exists Condition

Function

Example

2-10

The exists-condition tests for the existence of at least one qualify-
ing record identified by the select subquery. Because the exists-
condition uses the parenthesized select statement only to
retrieve a record for comparison purposes, it requires only wild-
card (*) field selection.

A predicate containing an exists-condition is true if the set of
records specified by select-expression includes at least one record.
If you add not, the predicate is true if there are no records that
satisfy the subquery.

The following query tests to see if at least one record that satis-
fies the condition exists:

QLI> select state_name from states s where exists -
CON> (select * from ski_areas where state =
s.state)

Qli Expressions

Predicate

In Condition

Function The in-condition lists a set of scalar expressions as possible val-
ues. The in operator allows you to equate a value to any of sevarl
values. You can use the in operator in subqueries.

Syntax scalar-expression [not] in (set-of-scalars)

set-of-scalars::= {constant-commalist|column-
select-expression}

column-select-expression: :=select [distinct]
expression from-clause [where-clause]

Example The following query selects records from the CITIES relation
with city names that are in the specified set:

QLI> select city, state, population from cities -

CON> where city in (’Boston’, ’Providence’,
‘Albany’)

Like Condition

Function The like-condition matches a string with the whole or part of a

field value. The test is case-sensitive.

Syntax database-field [not] like scalar-expression
[escape character]

Options scalar-expression
Usually represents an alphabetic or numeric literal, and can
contain wildcard characters. Wildcard characters are:

¢ The underscore, _, which matches a single character

* The percent sign, %, which matches any sequence of char-
acters, including none. You should begin and end wildcard
searches with the percent sign so that you match leading or
trailing blanks.

escape character
Tells qli to treat the next character as itself rather than as a
wildcard. This allows you to search for strings that contain “%”
or“”

Qli Expressions 2-11

Predicate

Example

Troubleshooting

See Also

2-12

The following query displays all fields from STATES record in
which the CAPITAL field contains the string “ville” preceded or
followed by any number of characters:

QLI> select * from states where capital like
rgville’;

The following query uses the escape clause to find strings con-
taining “@.”

QLI> sleect city from cities where
CON> city like “%@%%” escape “@”"

See the discussion of errors and error handling in the Qi Guide.
See the entries in this chapter for:

¢ gselect expression
* gcalar expression
¢ delete

e update

Qli Expressions

Record Selection Expression

Record Selection Expression (RSE)

Function

Syntax

First Clause

Function

Syntax
Options

The record selection expression specifies the search and
delivery conditions for record retrieval.

[first-clause]l record-source [with-clause]
[reduced-clause] [sorted-clause]

record-source: :={relation-clause|cross-clause}

relation-clause: :=[context-variable in]
relation-name

cross-clause: :=relation-clause cross
record-source [over field-name-commalist]

The following sections describe the six clauses of the record selec-
tion expression:

* First clause

* Relation clause

¢ Cross clause

e With clause

¢ Reduced clause (project)

¢ Sorted clause

The first clause limits the records in a stream to the number you
specify with an integer.

first integer-expression

1nteger expr6351on
~ Specifies the number of records you want to include. Qli trun-
cates any fractional portion of the integer. Unless you sort the

Qli Expressions 2-13

Record Selection Expression

Example

record stream when you use the first-clause, n records are
selected at random.

The following query uses a first-clause and a sorted-clause to dis-
play the two youngest states:

QLI> for first 2 states sorted by descending
statehood

CON> print state_name |

CON> * was admitted to the Union on ‘' | statehood
Hawail was admitted to the Union on 21-AUG-1959
Alaska was admitted to the Union on 3-JAN-1959

Relation Clause

Function

Syntax

Example

2-14

The relation-clause identifies the target relation.

[context-variable in] [database-handle.]
relation-name

context-variable
Used for name recognition, and is associated with a relation. A
context variable can contain up to 31 alphanumeric characters,
dollar signs ($), and underscores (_). However, it must start
with an alphabetic character.

Qli is not sensitive to the case of the context variable. For
example, it treats “B” and “b” as the same character.

database-handle
Identifies the database for multiple database access.

The following statement uses a relation-clause, a cross-clause,
and a sort-clause to display only those states in which the capital
is not the largest city:

QLI> for s in states cross ¢ in cities over state
CON> cross

CON> cs in cities with cs.state = c.state and
CON> cs.city = s.capital and

CON> cs.population < c.population -

CON> sorted by s.state -

CON> reduced to s.state, s.capital -

Qli Expressions

Record Selection Expression

CON> print s.state_name,
CON> ' contains cities larger than ', s.capital

Cross Clause (Join)

Function

Syntax

Options

Examples

The cross-clause performs a join operation. It creates dynamic
relationships by matching up records from two or more relations
in the same database.

The relationship can be based on the equality of common fields
(equijoin), inequalities (non-equijoin), or the absence of relation-
ships (cross product). Unlike most other rse clauses, cross-clause
can be repeated to include as many relations as are necessary.

cross relation-clause [over field-name-commalist]

over
Equates a field in one relation with a field in another, like a
with-clause. The field-name must be exactly the same in both
relations. Otherwise, you must use the with-clause, even if both
fields are based on the same global field.

The following query displays the names of cities that are larger
than the capitals of their states:

QLI> for s in states cross ¢ in cities over state -
CON> cross

CON> cs in cities with cs.state = c.state and
CON> cs.city = s.capital and

CON> cs.population < c.population -

CON> sorted by s.state, c.city

CON> print c.city, s.state_name,

CON> ’ is larger than ', s.capital

The following query uses two relation-clauses and a cross-clause
to list a ski area, city, and state in which it is located:

QLI> for s in states cross ski in ski_areas over
CON> state
CON> print ski.name, ski.city, s.state_name

Qli Expressions 2-15

Record Selection Expression

With Clause

Function

Syntax
Options

Example

2-16

The following query does the same thing as the preceding query,
but uses an explicit join condition in place of the cross shortcut:

QLI> for s in states cross ski in ski_areas with
CON> s.state = ski.state
CON> print ski.name, ski.city, s.state_name

The following query displays SKI_AREAS records that duplicate
another ski area record in everything but the TYPE field:

QLI> for sl in ski_areas cross s2 1in ski_areas with
CON> sl.name = s2.name and

CON> sl.state = s2.state and

CON> sl.city = s2.city and

CON> sl.type > s2.type

CON> print sl.state, sl.name

Because there are no duplicate records in the SKI_AREAS rela-
tion, this query does not return any records.

The with-clause specifies a search condition or combination of
search conditions.

Often you want only a subset of the records in a relation. When
you can describe the records you want by comparing values in the
records to values you specify, InterBase selects and returns only
those records you have described.

with boolean-expression

boolean-expression
Specifies a valid Boolean expression used to select records.

The following query specifies an explicit join condition:

QLI> for s in states cross ski in ski_areas with
CON> s.state = ski.state
CON> print ski.name, ski.city, s.state_name

Qli Expressions

Record Selection Expression

Reduced Clause (Project)

Function The reduced-clause performs a project operation, retrieving only
the unique values for a field.

When you ask for a record stream projected on a field, InterBase
considers a list of fields and eliminates records that do not have
a unique combination of values for the listed fields. If you include
a reduced clause in an RSE, you can reference only the fields
listed in the reduced clause and statistical expressions in print
statements driven by the RSE. Do not erase or modify records
whose RSE includes a reduced to clause.

Syntax reduced ([to] dbfield-expression-commalist
dbfield-expression ::= [context.variable]
field-name

Example The following query uses a reduced-clause to list the states in
which there are ski areas:

QLI> print ski_areas reduced to state

Note that this query returns only the values of the STATE field,
ignoring all other fields.

Sorted Clause

Function The sorted-clause orders the output, returning the record stream
sorted by the values of one or more sort keys.

Syntax sorted [by] sort-key-commalist

sort-key ::= [ascending|descending]
[anycase |exactcase] dbfield-expression
dbfield-expression ::= [context.variable]
field-name

Options sort-key
Specifies the field or fields on which you want to sort. You can
sort a record stream alphabetically, numerically, by date, and
by any combination of these. The sort-clause lets you have as
many sort keys as you want.

Qli Expressions 2-17

Record Selection Expression

Each sort key can specify whether the sorting order is
ascending (the default order for the first sort key) or
descending.

The sorting order is “sticky”; that is, if you do not specify
whether a particular sort key is ascending or descending,
InterBase assumes that you want the order specified for the
most recent key. Therefore, if you list several sort keys, but
only include the keyword descending for the first key, Inter-
Base sorts all keys in descending order.

The sort key can also specify whether a sort is case sensitive or
not. A case sensitive sort (exactcase) sorts capital letters
before lowercase letters. A case insensitive sort (anycase) does
not. The default is exactcase.

Example The following query uses a first-clause, a relation-clause, and a
sorted-clause to display the two “youngest” states:

QLI> for first 2 states sorted by descending

CON> statehood

CON> print state_name |

CON> ' was admitted to the Union on ' | statehood

The following statement displays the names of states and capi-
tals in which the capital is not the largest city:

QLI> for s in states cross c in cities over state
CON> cross

CON> cs in cities with cs.state = c.state and
CON> cs.city = s.capital and

CON> cs.population < c.population -

CON> sorted by s.state -

CON> reduced to s.state, s.capital

CON> print s.state_name,

CON> ' contains cities larger than ’, s.capital

Troubleshooting See the discussion of errors and error handling in the QUi Guide.
See Also See the entries in this chapter for:

¢ Boolean expression

e Value expression

2-18 Qli Expressions

Scalar Expression

Scalar Expression

Function

Syntax

The scalar-expression is a symbol or string of symbols used in
predicates to calculate a value. InterBase uses the result of the
expression when executing the statement in which the expres-
sion appears.

You can add (+), subtract (-), multiply (*), and divide (/) scalar
expressions. Arithmetic operations are evaluated in the normal
order of addition, subtraction, multiplication, division. You can
use parentheses to change the order of evaluation.

The concatenation operator (|) is a formatting convenience. For
example, if your select command includes a list of value expres-
sions separated by commas, qli displays the field values in
columnar order, padding out things like varying string fields
with blanks. However, you can use the concatenation operator
and constants to print a more legible display.

scalar-expression ::= [-]scalar-value
larithmetic-operator scalar-expression]
scalar-value ::={field-expression |
constant-expression | statistical-function |
(scalar-expression) }

arithmetic operator::={+|-1*|/11}

These scalar expressions are described in the following sections

* Database field expression
* Constant expression

e Statistical function

Database Field Expression

Function

Syntax

The field-expression references a database field.

[relation-name. |view-name. |alias.]
database-field

Qli Expressions 2-19

Scalar Expression

Options

Examples

2-20

relation-name

view-name

alias
Specifies the relation, view, or alias (synonym for a relation or
view) in which the field is located. The alias is assigned to a
relation or a view in a select-expression.

The expression can be of the form alias.* or relation.* This way
you can request all the fields from a relation without having to
list them all.

The following query displays all fields from the CITIES record
that represents Boston:

QLI> select * from cities where city = ‘Boston’

The following query displays selected fields from the same
record:

QLI> select population, altitude, latitude,
CON> longitude -
CON> from cities where city = ’‘Boston’

The following query displays selected fields from CITIES with a
population greater than 1,000,000:

QLI> select city, state, population from cities -
CON> where population > 1000000

The following query joins records from the CITIES and STATES
relations:

QLI> select c.city, s.state_name from cities c, CON
> states g -
CON> where s.state = c.state

The following query selects cities with a population within
100,000 of the population of Boston:

QLI> select city, state, population, altitude from
CON> cities where

CON> population between

CON> (-99999) + (select total (population) from

CON> cities where city = ’‘Boston’) and
CON> 99999 + (select total (population) from
CON> cities where city = ’'Boston’)

Qli Expressions

Scalar Expression

Constant Expression

Function

Syntax

Options

Example

The constant-expression specifies a string of ASCII digits inter-
preted as a number or as a string of ASCII characters.

{integer-stringldecimal-string| float-stringl|
ascii-string}

Integer-string
Written as signed or unsigned decimal integers without deci-
mal points. For example, the following are integers: -14, 0, and
9.

decimal-string
Written as signed or unsigned decimal integers with decimal
points. For example, the following are decimal strings: -14.3,
0.021, and 9.0.

floating-string
Written in scientific notation (that is, E-format). A number in
scientific notation consists of a decimal string mantissa, the
letter E, and a signed integer exponent. For example, the fol-
lowing are floating numerics: 7.12E+7 and 7.12E-7.

ascii-string
Qli accepts single quoted () or double quoted (”) characters. It
accepts unquoted ASCII strings containing only letters. An
unquoted string is converted to uppercase. The ASCII printing
characters are shown in the following table:

Characters Description

A—7 Uppercase alphabetic
a—z Lowercase alphabetic
0—9 Numerals

1@#3 % "&* ()_-+="~[11{}) Special characters

The following query displays selected fields from CITIES with a
population greater than 1,000,000:

QLI> select city, state, population from cities -
CON> where population > 1000000

Qli Expressions 2-21

Scalar Expression

Statistical Function

Function

Syntax

Example

Troubleshooting

See Also

2-22

A statistical-function is an expression that calculates a single
value from the values of a field in a relation, view, join, or group
of records.

{count (*)|

function-name (scalar-expression) |
function-name (distinct) field-expression
function-name ::= {count | sum |avg | max | min}

count (*)
Returns the number of qualifying records in a relation.

count
Returns the number of unique values for the field. You must
specify distinct.

sum
Returns the sum of values for a numeric field in all qualifying
records.

avg
Returns the average value for a numeric field in all qualifying
records, eliminating null values.

max
Returns the largest value for the field.

min
Returns the smallest value for the field, ignoring null values.

The following example returns a count of records in the CITIES
relation, the maximum population, and the minimum population
of cities in that relation:

QLI> select count (*), max (population),
CON> min (population) from cities

See the discussion of errors and error handling in the Qli Guide.

See the entry in this chapter for predicate.

Qli Expressions

Select Expression

Select Expression

Function

The select-expression specifies the search and delivery conditions
for record retrieval.

Syntax

select-clause [where-clause]

The following sections describe the four clauses of the select expression:

Select Clause

e Select clause
* Where clause
* Grouping clause

¢ Having clause

Function The select-clause lists the fields to be returned and the source
relation or view.

Syntax select [distinct] scalar expression-commalist
from from-item-commalist
from-item ::= relation-name [alias]

Options distinct

Causes InterBase to perform a projection of the qualifying
records on the scalar expressions listed. No combination of val-
ues appears more than once.

alias
The optional alias is used for name recognition, and is associ-
ated with a relation. An alias can contain up to 31 alpha-
numeric characters, dollar signs ($), and underscores (_). How-
ever, it must start with an alphabetic character. Qli is not sen-
sitive to the case of the alias. For example, it treats “B” and “b”
as the same character.

Qli Expressions 2-23

Select Expression

Example

Where Clause

Function

The following query projects the SKI_AREAS relation on the
STATE field:

QLI> select distinct state from ski_areas

The where-clause specifies search conditions or combinations of
search conditions.

When you specify a search condition or combination of conditions,
the condition is evaluated for each record that might qualify.

Often you want only a subset of the records in a relation. When
you can describe the records you want by comparing values in the
records to values you specify, InterBase selects and returns only
those records you have described.

Syntax

where predicate

Options

Examples

2-24

predicate
Specifies the predicate used to select records.

The following query returns CITIES records for which the POP-
ULATION field is not missing:

QLI> select city, state, population from cities -
CON> where population is not null

The following query joins two relations on the STATE field for cit-
ies whose population is not missing:

QLI> select c.city, s.state_name from cities c,
CON> states s -

CON> where c.state = s.state and

CON> c.population not missing

The following query prints the name, state, and population of cit-
ies that are not the largest in their state:

QLI> select cl.city, cl.state, cl.population from
CON> cities cl where
CON> exists (select * from cities c¢2 where

Qli Expressions

Select Expression

CON> c2.state = cl.state and
CON> c2.population > cl.population)

The following query prints the name, state, and population of
states which are larger than the average city in their state:

QLI> select cl.city, cl.state, cl.population from
CON> cities cl where

CON> cl.population > (select avg (population) from
CON> cities c2 where

CON> c2.state = cl.state) order by state

Grouping Clause

Function

Syntax

Options

Example

The grouping-clause partitions the results of the from-clause or
where-clause into control groups, each group containing all rows
with identical values for the fields in the grouping-clause’s field
list. Aggregates in the select-clause and having-clause are com-

puted over each group. The select-clause returns one row for each

group.

The aggregate operations are count (count), sum (sum), average
(avg), maximum (max), and minimum (min). See the entry for
scalar-expression in this chapter.

group by database-field-commalist

database-field
Specifies the field the values of which you want to group. Each
set of values for these fields identifies a group.

The following request provides a total population by state of
municipalities stored in the CITIES relation, but includes only
those cities for which the latitude and longitude information has
been stored, which are located in states whose names include the
word “New”, and where the average population of cities in the
state exceeds 200,000 people:

QLI> select sum (c.population), s.state_name
CON> from cities c, states s -

CON> where s.state_name like ’'%New$%’ and
CON> c¢.latitude is not null and

CON> c.longitude is not null and

Qli Expressions 2-25

Select Expression

CON> c.state = s.state -
CON> group by s.state -
CON> having avg (population) > 200000

Having Clause

Function The having-clause specifies search conditions for groups of
records. If you use the having-clause, you must first specify a
grouping-clause.

The having-clause eliminates groups of records, while the where-
clause eliminates individual records. Generally speaking, you

can use subqueries to obtain the same results. The main advan-
tage to the use of this clause is brevity. However, some users may
find that a more verbose query with subquery is easier to under-

stand.
Syntax having predicate
Example The following cursor provides a total population by state of

municipalities stored in the CITIES relation, but includes only
those cities for which the latitude and longitude information has
been stored, which are located in states whose names include the
word “New”, and where the average population of cities in the
state exceeds 200,000 people:

QLI> select sum (c.population), s.state_name
CON> from cities ¢, states s -
CON> where s.state_name like ’'%New%’ and

CON> c.latitude is not null and
CON> c.longitude is not null and
CON> c.state = s.state -

CON> group by s.state -
CON> having avg (population) > 200000

Troubleshooting See the discussion of errors and error handling in the Qli Guide.
See Also See the entries in this chapter for:

* Predicate
* Scalar expression

See the entry for select in Chapter 3.

2-26 Qli Expressions

Value Expression

Value Expression

Function

Syntax

The value-expression is a symbol or string of symbols from which
InterBase calculates a value. InterBase uses the result of the
expression when executing the statement in which the expres-
sion appears.

value-expression ::= {arithmetic-expression |
dbfield-expression | first-expression |
format-expression | numeric-literal-expression |
prompting-expression | quoted-string-expression
| running-expression | statistical-expression

| username-expression}

The following sections discussion the nine options of the value
expression:

* Arithmetic expression

¢ Database field expression
¢ First expression

¢ Format expression

¢ Numeric literal expression
* Prompting expression

* Quoted string expression

* Running expression

* Statistical expression

* Username expression

Arithmetic Expression

Function

The arithmetic-expression combines value expressions and arith-
metic operators.

You can add (+), subtract (-), multiply (*), and divide (/) value
expressions in assignment statements. Arithmetic operators are
evaluated in the normal precedence of addition, subtraction, mul-

Qli Expressions 2-27

Value Expression

Syntax

Example

tiplication, division. Use parentheses to change the order of eval-
uation. You can use the concatenation operator (|) to combine
field values in record selection expressions.

value-expression-1 {+ | - | * | / | | }
value-expression-2

The following statement includes an arithmetic value expression
that calculates and displays the altitude in meters:

QLI> for ¢ in cities cross s in states over state

CON> print c.city, s.state_name | ’ is situated at
T

CON> c.altitude * 0.3048 | ' meters above sea
level.’

Database Field Expression

Function

Syntax

Example

2-28

The dbfield-expression references database fields. This expres-
sion can occur in several clauses of an RSE and Boolean
expression.

[context-variable.] field-name

context-variable
Qualifies the database field for multi-relation operations. You
must declare a context variable for a relation in the relation-
clause of the record selection expression.

The following statement uses database field expressions to dis-
play the city and state, an arithmetic value expression that cal-
culates and displays the altitude in meters, a numeric literal
expression (0.3048) used in the arithmetic operation, and two
quoted string expressions:

QLI> for ¢ in cities cross s in states over state
CON> print c.city, s.state_name |

CON> ' is situated at ’ |

CON> c.altitude * 0.3048 | ' meters above sea
level.’

Qli Expressions

Value Expression

First Expression

Function

Syntax

Example

The first-expression forms a record stream and evaluates an
expression. InterBase finds the first qualifying record in the
record stream. If the stream is empty, it returns an error unless
you supply an else clause. Otherwise, InterBase evaluates value-
expression-2 in the context of the record it found. The result of the
evaluation is returned as the value of first-expression or the value
specified in the else clause.

If you use the first-expression in a print command, you must
enclose it in parentheses. Otherwise, qli assumes that you are
using the first-clause of the record selection expression.

first value-expression-1 from rse

The following query returns the abbreviation for a specific state:

QLI> print city, state of cities with
CON> state = first state from states with
CON> state_name = ’'Missouri’

Format Expression

Function

Syntax

Example

The format-expression forces a value to an alphanumeric repre-
sentation using the specified edit string. You can use the format
expression to specify a format when moving a value to a text field
or variable, or to specify formats for parts of a concatenation.

format value-expression using edit-string

The following examples use the formatting value expression:

QLI> declare a char[10]

QLI> a = ’'today’
QLI> print a
today

QLI> a = format ‘today’ using w(9)

QLI> print a

Thursday

QLI> print ’'Today is ’ | ‘today’ using w(9)

** OLTI error: Error converting string "Today is
today" to date **

Qli Expressions 2-29

Value Expression

QLI> print ‘Today is ' | format ‘today’ using w(9)
Today is Thursday

QLI>

QLI> report

CON> at top of page print col 55, "Page " | format

running count using 79,
CON> skip, column_header

Numeric Literal Expression

Function

Syntax

Example

The numeric-literal-expression represents a decimal number as a
string of digits with an optional decimal point.

[+ | -1 stringl.string]

The following statement uses database field expressions to dis-
play the city and state, an arithmetic value expression that cal-
culates and displays the altitude in meters, a numeric literal
expression (0.3048) used in the arithmetic operation, and two
quoted string expressions:

QLI> for ¢ in cities cross s in states over state

CON> print c.city, s.state_name | * 1is

CON> situated at ' |

CON> c.altitude * 0.3048 | ' meters above sea
CON> level.’

Quoted String Expression

Function

2-30

The quoted-string-expression represents a string of ASCII char-
acters enclosed in single () or double (") quotation marks. The
following table shows the ASCII printing characters:

Characters Description
A—7 Uppercase alphabetic
a—z Lowercase alphabetic

Qli Expressions

Example

Value Expression

Characters Description
0—9 Numerals
'@#3% " "&* ()_-+=“~[11) Special characters

The following statement includes two quoted string expressions:

QLI> for c¢ in cities cross s in states over state

CON> print c.city, s.state_name | ' is situated at
fo

CON> c.altitude * 0.3048 | ' meters above sea
level.’

Running Expression

Function

Example

The running-expression calculates a running count for a control
item or a running total for an expression.

Ordinarily, running count is used to count records in a record
stream, but when you use it with the report writer, it also counts
other control items. For example, the report writer phrase at top
of page print running count prints the current page number. Sim-
ilarly, at top of state print running count prints the number of
occurrences of the control field.

The following example uses the running value expression:

QLI> print running count, state_name of states -
CON> sorted by statehood

QLI> print running total population, city,
CON>population of cities where state = ’'NY’

Statistical Expression

Function

The statistical-expression calculates a value based on a value
expression.

Qli Expressions 2-31

Value Expression

Syntax

Example

If a field value included in value-expression is missing for a
record, that record is not included in the calculation. For
average, max, and min, if the record stream created by rse is
empty, the value of the statistical expression is missing. For
total and count, if the record stream is empty, the total is 0.

{statistical-operation value-expression of rse |
count of rse}

statistical-operation ::= {average | max | min |
total }

The following query uses several statistical expressions:

QLI> for states with any cities over state with
CON> altitude * 0.3048 > 1000

CON> print state_name | " incorporates at least one
kilometer high city. ",

CON> skip, col 5, "The average height of cities in
" | state | " is " |

CON> average altitude of cities over state | " feet
and the maximum is " |

CON> (max altitude of cities over state), skip

Username Expression

Function

Syntax

2-32

The username-expression is a value expression that automati-
cally picks up the username or login of the person running the
program. Combined with a trigger that automatically stores the
username of users storing or modifying records, you can keep
track of who does what to which records. See the Data Definition
Guide for more information about triggers.

rdb$user_name

rdb$user_name
A value expression to which is assigned the username or login.
This expression can only be used in RSEs, and cannot be qual-
ified with a context variable.

Qli Expressions

Example

Troubleshooting

See Also

Value Expression

The following statement picks up the username and uses an RSE
that selects records based on the value of the USER_NAME field:

for employees with user_name = rdb$user_name
print emp_name, user_name

See the discussion of errors and error handling in the QIi Guide.
See the entries in this chapter for:

* Boolean expression

* Record selection expression

Qli Expressions 2-33

Chapter 3
Qli Statements and Commands

This chapter contains entries for the InterBase qli statements.

Overview

Requests made to gli fall into two categories:

e Statements
Statements generally retrieve and alter data, or affect the order of execution of
statements. For example, the GDML for, print, store, modify and erase state-

ments and the SQL select, update, insert and delete statements retrieve and
alter data.

Statements that affect the order of execution include the if/else, repeat and
begin/end statements.

Qli Statements and Commands 3-1

e Commands.

Commands affect the operating environment. Commands include the ready and
finish commands, and the metadata change requests like define relation and
alter table.

The distinction between commands and statements is important when you are working
with compound statements. Many statements can enclose other statements. For exam-
ple, the if/else statement has two branches: true and false. Each branch takes a state-
ment which executes if the condition matches the branch. Only statements can be used
in an if/else statement, between a begin-end, in a repeat loop or in the loop of a for
statement.

Each of the requests below is defined as a command or statement in its description.

Abort Accept Alter table
Assignment Begin-end Commit

Copy procedure Create database Create index
Create table Create view Declare

Define database Define field Define index
Define procedure Define relation Delete

Delete metadata Delete procedure Drop database
Drop index Drop procedure Drop table
Drop view Edit Edit procedure
Erase Exit Field attributes clause
Finish For For form
Grant Help If-else

Insert List Modify

Modify field Modify index Modify relation
Prepare Print Quit

Ready Rename procedure Repeat

Report Restructure Revoke
Rollback Select Set

Shell Show Spawn

Store Then clause Update

3-2 Qli Statements and Commands

Abort

Function

Syntax

Options

Example

Troubleshooting

See Also

Abort

The abort statement aborts your current request and brings you
back to the gli prompt. You can use this statement in procedures
to respond to error conditions.

abort value-expression

value-expression
The value expression that is evaluated in the context of the cur-
rent RSE. This is the value expression that prints out in the
error message that the abort statement generates.

The following example looks for cities that meet particular condi-
tions. If the condition is not met, the abort statement ends the
request and returns a simple message to notify the user:

QLI> for cities with population not missing -
CON> sorted by altitude -
CON> begin -

CON> if population < 1000000 print city,
CON> population else

CON> abort city |

CON> "is too big for a small town boy"

CON> end

** QLT error: Request terminated by statement:
New York is too big for a small town boy **

You may encounter the folowing message when you use the abort
statement:
* “yalue-expression” is undefined or used out of context

You specified a value expression that doesn’t exist. Check the
spelling and try again.

See the entry in this chapter for value expression.

Qli Statements and Commands 3-3

Accept

Accept

Function

Syntax

Options

Example

Troubleshooting

Qli displays assignments to form fields at an accept statement.
If you omit assignments to form fields, those fields are displayed
as missing.

accept [(quoted-string)] [field-name-commalist]

quoted-string
The quoted string provides a tag line which prints at the bot-
tom of a form.

field-name-commalist
The field name commalist is a list of form field names that are
made available for input.

The following example displays a form to accept the input of a
state code, and then displays a form to data from cities in that
state:

QLI> for form f in cities

CON> begin

CON> accept ("Enter state code, then <enter>") CON>
state

CON> for ¢ in cities with c.state = f.state
CON> begin

CON> f.state = c.state

CON> f.city = c.city

CON> f.altitude = c.altitude

CON> f.latitude = c.latitude

CON> f.longitude = c.longitude

CON> accept ("Hit <enter> to continue or <fl> to
stop")

CON> end

CON> end

You may encounter the following messages when you use the
accept statement:

¢ field <name> is not defined in form <name>

A field that you mentioned is not in the form.

Qli Statements and Commands

Accept

* no context for accept statement
Your program lacks an outer for form statement.
See Also See the entry in this chapter for:

e for form

¢ for menu

Qli Statements and Commands 3-5

Alter Table

Alter Table

Function

The alter table statement drops a field from a table or adds a
field to a table. Unlike the “standard” SQL alter table state-
ment, gpre lets you perform multiple drops and adds in one
statement.

Syntax

alter table table-name operation-commalist
operation::= {add field-name datatype[not null] |
drop field-name}

Options

Example

Troubleshooting

See Also

3-6

table-name
Specifies the table you want to change.

field-name
Names the field you want to add or drop. If you add a field to a
table, the field name must be unique among all field names in
the table.

For a list of datatypes, see the entry in this chapter for create
table.

not null
Disallows the null or missing value as a valid value for this
field.

The following statements alter tables by adding and dropping
fields: '

QLI> alter table states add
CON> type_of_govt char(3), add
CON> capital wvarchar(25);

QLI> alter table cities
CON> drop population;

See the discussion of errors in Chapter 1 of the Qli Guide

See the discussion on defining metadata in the Qi Guide.

Qli Statements and Commands

Assignment

Assignment

Function

Syntax

Options

The assignment statement assigns values to fields in the modify
and store statements, or values to variables. The QIi Guide con-
tains a detailed discussion of the assignment statement.

Field Assignment:

dbfield-expression-1 = {value-expressionl|edit
[dbfield-expression-2]}

dbfield-expression: :=

[context-variable.] field-name

Variable Assignment:

variable-name = value-expression

dbfield-expression-1
Specifies the field to receive a value. The context-variable
optionally names the relation.

value-expression
Specifies the value you want to assign to dbfield-expression.
This value can be a quoted literal, a reference to another field,
a prompting value expression (*.’your own prompt’), an aggre-
gate, computation, statistical expression, or the word null to
assign the missing value.

dbfield-expression-2
Specifies the blob field whose contents you would like to edit for
assignment to dbfield-expression-1.

variable-name
Identifies the variable to which you want to assign a value. The
variable must have been declared with a declare variable
command.

value-expression
Specifies the value you want to assign to variable-name.

Qli Statements and Commands 3-7

Assignment

Examples

Troubleshooting

3-8

The following example stores a record, using a begin-end state-
ment to structure a compound statement for assigning values to
each field:

QLI> store cross_country using
CON> begin

CON> city = ’‘Andover’
CON> state = 'MA’

CON> area_name = ’'Parker State Forest’
CON> phone = 5085550123
CON> num_trails = 25
CON> trails_set = 0

CON> lighted = 0

CON> instruction = ’'N’
CON> rentals = 'N’

CON> repairs = ‘N’

CON> food = ‘N’

CON> lodge = ’'N’

CON> packages = ‘N’

CON> guided_tours = ‘N’
CON> end

The following example modifies a field value:

QLI> for ¢ in cities with c.city = "Boston"
CON> modify using c.population =
CON> c.popu3zlation * 1.10

You may encounter the following messages when you use the
assignment statement:

* Operation failed on database “database-filename” with any of
the following secondary messages:
¢ Arithmetic exception, numeric overflow, or string truncation

A value that you tried to store or modify did not fit. Check the
field’s characteristics and try again.

o Attempt to store a duplicate value in a unique index

A field value that you tried to store or modify violated the
"duplicates not allowed" restriction for an index that includes
. that field. Try another value.

° Conversion error

This is a generic data conversion error that covers all but the
following two cases:

Qli Statements and Commands

See Also

Assignment

* Conversion error from string "out-of-range-date”

You tried to store or modify a date field with a value outside
the range 1 January 100 to 11 December 5941, or an invalid
date such as 29 February 1986. Try a value within the valid
range. If the range is not adequate, you cannot use the date
datatype.

¢ Conversion to blob not supported

You tried to store non-blob data in a blob field. Use the edit
option described above.’

* Validation error for field field-name, value “supplied-value”

A field value that you tried to store or modify violated the
valid_if clause for a field. Check the valid values and try
again.

* “String” is undefined or used out of context

This is a qli message in response to an unrecognized string.
e Execution terminated by signal

You probably issued an end-of-file command.

¢ User aborted (WC -Q) edit operation (display manager/ Pad
manager)

You probably exited from the editor during a blob assignment
without doing anything. This informational message comes
from outside qli, and means that the target blob will contain
exactly the same value as the source blob.

* No permission for “type” access to “object”

A security class exists for the specified object, and its access
control list prohibits you from reading or writing that object.

¢ Action cancelled by trigger to preserve data integrity

A trigger exists for an object you tried to modify or delete, and
the corollary actions associated with the trigger prohibit that
operation.

See the entries in this chapter for:
¢ declare variable

¢ Dbegin-end

¢ modify

* store

Qli Statements and Commands 3-9

Begin-End

Begin-End

Function

Syntax

Options

Examples

Troubleshooting

3-10

The begin-end statement describes a block of qli statements
that act together.

begin
gli-statement
end

gli-statement
Any of the gli statements or any procedure containing state-
ments.You cannot use a command or a procedure containing
commands as the action of an if-else statement.

The following example stores a record and uses a begin-end
block for the assignment statements:

QLI> store cities using
CON> begin

CON> city = ’‘Shadkill’
CON> state = ’'NY’

CON> population = 20000
CON> altitude = 17

CON> end

The following example defines a procedure that stores 30 cities:

QLI> define procedure store_30_cities
CON> begin

CON> repeat 30 store cities
CON> print skip, "Well done!", skip
CON> end

CON> end_procedure

You may encounter the following message when you use the
begin-end statement:

Expected statement, encountered command

This message means you included a command in the begin-end
block. Only the statements listed under gl1i-statement above
should be used in the begin-end block. In general, actions that
affect or report on the database environment (ready, finish,

Qli Statements and Commands

Begin-End

show, and set) are commands and cannot be included in a
begin-end block.

See Also See the entries in this manual for any qli statement.

Qli Statements and Commands 3-11

Commit

Commit

Function

Syntax

Options

3-12

Commit can be a command or a statement. It makes changes a
permanent part of the database.

When typed to the qli prompt, commit is a command. It changes
the transaction environment, letting others see your changes and
letting you see changes that others have made to the database.

When you type commit inside another statement (e.g. for, if-
else,or begin-end) qli executes a commit statement. A commit
statement makes your changes permanent and available to oth-
ers. It does not change your transaction environment. You cannot
see changes that others have made to the database since your
transaction began.

You can use commit in conjunction with the prepare statement
to execute a two-phase commit. InterBase automatically executes
such a commit when necessary, but, if required, you can control
the two-phase commit explicitly. See the entry for prepare in
this chapter.

commit [database-handle-commalist]

database-handle
Specifies a name that can be used to qualify database reference
when you are using multiple databases. If you do not specify a
database handle, the commit command affects all open data-
bases.

If you assign a database handle when you ready the database,
you can use the handle to limit the effect of the commit to spe-
cific databases. When you access more than one database in
qli, InterBase automatically starts up separate subtransac-
tions for each database. Each subtransaction is a single trans-
action. The optional database-handle lets you control these
subtransactions explicitly by letting you commit or roll back
transactions by database.

If you forgot to assign a database handle when you readied the
database and run into a problem with a database while you
have several open, do not despair; qli assigns a default handle

Qli Statements and Commands

Examples

Troubleshooting

See Also

Commit

if you have not specified one. Type the following to find out the
default database handle assigned by qli:

QLI> show databases
Database "atlas.gdb" readied as QLI_O

Qli displays the names of all available entities, including data-
bases and handles. The default handles are of the form
"QLI_n," where n is a numeric integer. Supply this handle as
an argument to commit:

QLI> commit gli_1

The following example readies a database and stores a record
which starts a transaction. The final line commits the transac-
tion:

QLI> ready atlas.gdb
QLI> store ski_areas

U

QLI> commit

The following example stores records in a loop, committing each
one:

QLI> repeat 10 begin
CON> store river_states
CON> commit

CON> end

You may encounter the following message when you use
commit:

Expected database handle, encountered <string>

You need a database handle. Check your typing, or use the show
databases command to check the database handle.

See the entries in this manual for:

¢ rollback
e finish

e prepare

Qli Statements and Commands 3-13

Copy Procedure

Copy Procedure

Function

Syntax

Options

Example

Troubleshooting

See Also

3-14

The copy procedure command copies a stored procedure.

copy procedure [database-handle.]procedure-name
[to] [database-handle.]procedure-name

procedure-name
Specifies the procedure you want to copy.

database-handle
Specifies a name that can be used to qualify the procedure
name when you are using multiple databases. If you do not
specify a handle, qli looks at the most recently opened data-
base for a procedure with the name you provided. If it can’t find
it there, qli continues its search backwards through the data-
bases you opened.

If you forgot to assign a database handle and want to use one,
use the default handle assigned by qli. Use the show
databases command for a list of handles associated with each
database.

The following command copies a procedure:
QLI> copy procedure sunbelt_cities warm_cities

You may encounter the following message when you use the
copy procedure statement:

Procedure <name> not found

The procedure does not exist as specified. Check your typing, or
use the show procedures command for a list of procedures.

See the QIi Guide for a comprehensive discussion of procedures.
See also the entries in this chapter for:

¢ define procedure
¢ delete procedure
e edit procedure

* rename procedure

Qli Statements and Commands

Create Database

Create Database

Function The create database statement creates a database and its sys-
tem tables.
Syntax create database quoted-filespec
[pagesize=integer]
Options quoted-filespec
Specifies the database file. If the shell you regularly use is case-
sensitive, make sure that you always reference the database
file exactly as it is spelled out in the create database statement.
The file specification can contain the full pathname to another
node in the network. File specifications for remote databases
have the following form.
Table 3-1. File Specifications for Remote Databases
From To Syntax
VMS VMS via DECnet node-name::filespec
VMS ULTRIX via DECnet node-name::filespec
VMS non-VMS and non-ULTRIX node-name”Milespec
ULTRIX VMS via DECnet node-name::filespec
Apollo Apollo //mode-name/filespec
Everything Else Whatever is left node-name:filespec

pagesize=integer
Specifies a page size to override the default page size of 1024
bytes. You can create databases with page sizes of 1024, 2048,
4096, and 8192 bytes. The advantage of a larger page size is
that it allows a more shallow “tree” structure in the index. Each
index bucket is one page long, so longer pages mean larger
buckets and fewer levels in the index hierarchy. If you will have
more than 50,000 records in any one table, you should use a
page size of 2048 rather than the default.

Qli Statements and Commands 3-15

Create Database

Example

Troubleshooting

See Also

3-16

The following statement creates a database in the current direc-
tory:

QLI> create database ’'personnel.gdb’;
See the discussion on errors in the Qi Guide.

For more information about creating a database and for other
database file options, see the Data Definition Guide.

For more information about SQL metadata operations, see the
Qli Guide.

See also the entries in this chapter for:

e create table
e create index

* create view

Qli Statements and Commands

Create Index

Create Index

Function

Syntax

Options

Examples

Troubleshooting

The create index statement defines an index for a relation.

create [unique] [ascending|descending] index
index-name on relation-name(field-name-commalist)

unique
Disallows duplicate values in the index. The values for the
indexed fields must be unique. If you try to store a value that
already exists, the assignment operation fails.

ascending|descending
Specifies the order in which an index is built. If neither quali-
fier is specified, the default order is ascending. Using the qual-
ifier does not replace using the order by clause in the select
statement.

index-name
Names the index. The index name must be unique among all
index names in the database.

relation-name
Identifies the relation for which the index is defined.

field-name-commalist
Specifies a column name or list of field names, separated by
commas, that comprise the index.

The following statements create a non-unique and unique index,
respectively:

QLI> create index xxx on states (capital);
QLI> create unique index xyz on states (state);

The following example creates a descending index on the
LENGTH field in the RIVERS relation:

QLI> create descending index longriv on rivers
(length) ;

See the discussion of errors and error handling in Chapter 1 of
the Qli Guide.

Qli Statements and Commands 3-17

Create Index

See Also See the discussion of defining metadata in the @Ii Guide.

3-18 Qli Statements and Commands

Create Table

Create Table

Function

Syntax

Options

The create table statement defines a relation and its constitu-
ent fields.

create table relation-name(field-definition-
commalist)

field-definition::= field-name datatype[not
null]
datatype::= {smallint|integer|date|

char(integer)| varchar(integer) |decimal[scale] |
float|long float}

relation-name
Names the relation you want to create. A relation name can
contain up to 31 alphanumeric characters, dollar signs ($), and
underscores (_). However, it must start with an alphabetic
character and be unique among relation names in the data-
base.

field-name-commalist
Specifies the name you want for the field in the relation. The
field name must be unique among all field names in the rela-
tion. The following table lists the SQL datatype and what
InterBase gives you.

Table 3-2. SQL and InterBase Datatypes

SQL Datatype | InterBase Datatype
smallint short

integer long

date date

char char

varchar varying

decimal long

Qli Statements and Commands

3-19

Create Table

Usage

Example

Troubleshooting

See Also

3-20

Table 3-2. SQL and InterBase Datatypes

SQL Datatype | InterBase Datatype

float float
long float double
not null

Disallows the null or missing value as a valid value for this
field.

Using the create table statement automatically invokes the
SQL security scheme for that table. If you create a table, you are
that table’s owner and accordingly have all privileges for that
table. You also have grant option for those privileges for that
table. See the entries in this chapter for grant and revoke for
further information on SQL security.

Note

You cannot assign a security class to relations created
with the SQL create table command. Instead, you con-
trol access to these relations by using SQL grant and
revoke commands.

The following statements define relations:

QLI> create table states (
state char(2) not null,
state_name varchar (25),
area integer,
statehood date,
capital varchar (25));

QLI> create table populations (
state char(2) not null,
census_1950 integer,
census_1960 integer,
census_1970 integer,
census_1980 integer));

See the discussion of errors and error handling in Chapter 1 of
the Qi Guide.

See the discussion on defining metadata in the Qli Guide.

Qli Statements and Commands

Create Table

Create View

Function

Syntax

Options

Examples

The create view statement creates a temporary view of data.
When you create a view by using embedded SQL, the view defi-
nition is not stored on the database. As a result, you cannot
access this definition through qli or gdef.

create view view-namel[(field-name-commalist)]
as select-statement N

view-name
Names the view you want to create. The view name must be
unique among all view names in the database.

field-name-commalist
Optionally names the fields for the view. If you choose not to
supply a field name, gpre uses the field name as specified in the
select statement that follows. Because the field names map
chronologically to the list of selected fields in the select state-
ment, you must specify all view field names or none.

If you supply the field name, it must be unique among all field
names in the view.

select-statement
A select statement that specifies the selection criteria for
records to be included in the view. Instead of the into clause
used in queries, the list of selected fields maps to the list of field
names for the view. The order is based on the value of
the RDB$FIELD_POSITION field in the RDB$RELATION _-
FIELDS system relation.

The select statement cannot contain a group by clause or top-
level aggregation.

The following statements define views:

QLI> create view half_mile_cities as
CON> select city, state, altitude from cities
CON> where altitude > 2500;

QLI> create view capital_cities as
CON> select c.city, s.state_name, c.altitude

Qli Statements and Commands 3-21

Create Table

CON> from cities c, states s where
CON> c.state = s.state and c.city = s.capital;

Troubleshooting See the discussion of errors and error handling in Chapter 1 of
the QIi Guide.

See Also See the discussion on defining metadata in the QIi Guide.

3-22 Qli Statements and Commands

Declare

Function

Syntax

Options

Declare

The declare statement lets you declare local and global vari-
ables for use in qli. You can use variables in statements, reports,
and procedures. To assign a value to a variable, use the assign-
ment statement.

Ordinarily, variables are available throughout a gli session.
They are called “global” variables, and their scope is the entire
session. However, if you declare a variable within a begin-end
block, it is a “local” variable, and its scope is that block. You can
use the variable within that block and other blocks nested in it,
but as soon as you leave the block the local variable disappears.

If a local variable has the same name as a global variable, only
the local variable is visible in the block where it is declared.
When you leave that block, the global variable becomes available
again. Although the terms local and global suggest that there are
only two levels of variable, you can declare variables at any level
in nested begin-end blocks. Their scope is the current block and
any blocks nested within it.

declare variable-name {datatype | based on
[dbhandle.]relation.field}

datatype: :={short[scale-clause] |long[scale-
clause] | float |double | char([n] |varying[n] |date}

scale-clause: :=8cale [-1n

variable-name
Names the variable. The variable name must start with an
alphabetic character (a-z), and can contain numbers, under-
scores, and dollar signs.

Choose variable names carefully. Variable names that conflict
with keywords or field, relation, or database names can cause

confusion, resulting in misunderstood queries and improbable

answers. See the beginning of this chapter for a list of qli’s key-
words.

Qli Statements and Commands 3-23

Declare

scale-clause
Specifies the power of 10 by which InterBase multiplies the
stored integer value for use by qli. For example, a negative
scale of two means that there should be a decimal point two
places to the left of the digits.

The following table lists the datatypes by size and range/preci-
sion.

Table 3-3. Datatypes by Size and Range/Precision

Datatype Size Range/Precision
short 16 bits -32768 to 32767
long 32 bits -2%%31 to (2**31)-1
float 32 bits Approximately 7 decimal digits
double 64 bits Approximately 15 decimal digits
char(n] n bytes 0 to 32767 characters
varying[n] | Varies up to n bytes 0 to 32767 characters
date 64 bits 1 January 100 to 11 December 5941
blob Varies None

based on

Creates a variable with the same datatype, scale and length as
the field specified.

dbhandle
An optional identifier indicating which database the relation is
in.

relation
A required qualifier for the specified field.

field
Specifies the field within the relation on which to base a new
field.

3-24 Qli Statements and Commands

Examples

Troubleshooting

See Also

Declare

The following command declares a variable GLARP, assigns 617,
and prints the variable’s value:

QLI> declare glarp long
QLI> glarp = 617
QLI> print glarp

GLARP

The following extract uses a prompting expression in the variable
assignment:

QLI> declare glarp long
QLI> glarp = *.’'value for glarp’
Enter value for glarp: 412

The following example uses an edit string to print a variable:

QLI> delcare c based on cities.city

CON> ¢ = "Boston"
CON> print city of cities with city = c
CITY
Boston

You may encounter the following message when you use the
declare variable statement:

expected field definition clause, encountered "bad string”

You tried to declare a variable, but the field definition was incor-
rect. Check the syntax and try again.

See the entries in this chapter for:

e assignment
e begin-end

Qli Statements and Commands 3-25

Define Database

Define Database

Function The define database command creates a database definition
file and readies the newly created database for access.
Syntax define database filespec
Options filespec
Specifies the primary file. If the shell you regularly use is case-
sensitive, make sure that you always reference the database
file exactly as it is spelled in the define database statement.
The file specification can contain the full pathname to another
node in the network. File specifications for remote databases
have the following form:
Table 3-4. File Specifications for Remote Databases
From To Syntax
VMS VMS via DECnet node-name::filespec
VMS ULTRIX via DECnet node-name::filespec
VMS non-VMS and non-ULTRIX | node-name”filespec
ULTRIX VMS via DECnet node-name::filespec
Apollo Apollo //mode-name/filespec
Everything Else Whatever is left node-name:filespec
Example The following statements define databases:

Troubleshooting

3-26

QLI> define database /gds/examples/atlas.gdb
QLI> define database atlas.gdb

You may encounter a privilege or protection violation from the
operating system when you try to create a database. Check the
directory in which you are creating the database to make sure

that you have the privilege to create files there.

Qli Statements and Commands

Define Database

See Also See the entries in this chapter for:
e define field

¢ define relation

Qli Statements and Commands 3-27

Define Field

Define Field

Function
Syntax

Options

Example

Troubleshooting

3-28

The define field command defines a global field.

define field field-name datatype [options]

field-name
Names the field you want to create. A field name can contain
up to 31 characters that can be alphanumeric, dollar signs ($),
and underscores (_). However, it must start with an alphabetic
character. It also must be unique among all global fields in the
database.

datatype
Specifies the field’s dataype. The datatype specification must
precede other field attributes. See the entry in this chapter for
field-attributes for more information.

options
Specifies a query name or edit string. See the entry in this
chapter for field-attributes for more information.

The following example defines a global field:
QLI> define field flag char[1]

You may encounter the following messages when you use the
define field command:
* Global field <field-name> already exists

The name you chose for the field is already in use in this data-
base for another field. Use a different name and try again.

* No datatype specified for field <field-name>

Unlike some of the clauses and commands that know they are
not complete, the define field command expects a datatype
on the same line or on a continuation line. Use a hyphen to

continue a line or the semicolon option on the set command.

¢ Expected field definition clause, encountered "string"

You specified a field name that began with a non-alphabetic
character or included an unrecognized attribute in the defini-
tion. If the former case is true, change the field name so it

Qli Statements and Commands

Define Field

starts with an alphabetic character. If the latter case is true,
check the command and make sure that you have included a
variable attribute.

See Also See the entry in this chapter for field attributes.

Qli Statements and Commands 3-29

Define Index

Define Index

Function

Syntax

Options

3-30

The define index command defines an index for a relation. You
must define a relation before you can create an index for it.
Because the index is created as part of the command, response
will be slow if the relation is large.

InterBase automatically maintains all indexes. You do not have
to reference an index when you access data—the InterBase
access method does it automatically.

define index index-name [for] relation-name
[{unique|duplicate[s]}]

[active|inactive}]

[ascending|descending]

field-name-commalist

index-name
Names the index you want to create. An index name can con-
tain up to 31 characters that can be alphanumeric, dollar signs
($), and underscores (_). However, it must start with an alpha-
betic character.

relation-name
Specifies the relation for which you are defining the index. You
cannot define an index on an external relation.

unique
Disallows duplicate values in the index. Try to index on fields
used as primary keys, such as unique identification numbers,
part numbers, employee numbers, etc.

You can define a unique index by specifying the optional key-

word unique. If you do so, the values for field-name or combi-
nations of field-names must then be unique. If you try to store
a value that already exists, the assignment operation fails. No
part of a unique key may be null.

If you create a multi-segment index, you should first consider
which of the key fields is likely to have the most unique values.
Having done so, you should list the field-names in descending

Qli Statements and Commands

Example

Define Index

order by uniqueness. Such ordering improves partial key
retrieval.

duplicate
Allows duplicate values in the index. This is the default.

active|inactive
Active specifies that the index should be built immediately.
Inactive specifies that the index should be built at a later time.
If the definition of an index is marked as inactive, InterBase
maintains only the index definition in the database. When you
change the state of the index to active with the modify index
statement, the index is built and becomes available to all users.

ascending|descending
Specifies the order in which an index is built. If neither quali-
fier is specified, the default order is ascending.

For increased efficiency in returning sorted values, use the
qualifier that corresponds to the order you are most likely to
specify in an order by or sort by clause. Using the qualifier does
not replace using an ordering clause when you retrieve values.

field-name
Specifies one or more fields from relation-name that are
indexed.

You can create a single or multi-segment index for a relation. A
single-segment index consists of a single field, while a multi-
segment index consists of two or more fields. In both cases, you
should avoid indexing a field that has few unique values. Such
indexes provide little performance improvement and can
reduce update performance. Because of the nature of the blob
datatype, you cannot index a blob field.

The following statements define relations and some indexes for
them:

QLI define relation states
U

QLI define relation cities

QLI> define index state_idxl for states -
CON> unique state;

QLI> define index state_idx2 for states -
CON> inactive unique state, state_name;

Qli Statements and Commands 3-31

Define Index

Troubleshooting

See Also

3-32

QLI> define index river_idxl for rivers -

CON> descending river;

QLI> define index rivstat_idxl for river_states -
CON> duplicate river, state;

You may encounter the following message when you use the
define index command:

* Index<index-name> already exists

The name you chose for the index is already in use in this
database for another index. Use a different name and try
again.

* No_meta_update - too few key fields found for index <index-
name>

You did not provide enough fields for an index. This message
often means that you listed a field for the index, but it does
not exist in the relation. Check the roster of fields in the rela-
tion and their spelling and try again.

See the entry in this chapter for define relation.

Qli Statements and Commands

Define Procedure

Define Procedure

Function The define procedure statement stores a sequence of gli oper-
ations in the database.

Syntax define procedure [database-handle.]
procedure-name operation...
end_procedure

operation::={qgli-command|gli-procedure|
gli-statement|gli-clauselgli-keyword}

Options [database-handle.] procedure-name
Names the procedure. The procedure name can be up to 31
characters and can contain alphabetic characters (A—Z and
a—z, all stored as uppercase), numeric characters (0—9),
underscores (_), and dollar signs ($). The procedure name must
start with an alphabetic character.

The optional database handle specifies the database in which
the procedure is stored.

gli-statement
Any of the qli statements or any procedure containing state-
ments.You cannot use a command or a procedure containing
commands as the action of an if-else statement.

There can be only one statement per physical line, unless you
separate the statements with a semicolon.

A single statement can span more than one physical line. When
qli encounters a return, it attempts to execute the statement.

This attempt can cause problems, especially if your command

was not quite complete (for example, erase cities followed by a

return, rather than erase cities with state = "VI"), or if the state-
ment is.

gli-command
Any of the qli commands described in this chapter. There can
be only one command per physical line, unless you separate the
commands with a semicolon.

gli-clause
A clause from a gli command or statement.

Qli Statements and Commands 3-33

Define Procedure

Example

Troubleshooting

3-34

qli-keyword
A qli keyword.

comment
You can include a running commentary in your procedures so
that other people can figure out what it does. Comment lines in
qli begin with a slash and asterisk and end with an asterisk
and a slash:

QLI> define procedure gl451
CON> /* This procedure does some useful things */
CON> print states with capital = *.‘capital city’

The following sequence of commands defines a procedure that
finds a record using a prompted-for value:

QLI> define procedure capital_info
CON> /* saves typing a common query */
CON> for s in states cross c in cities over
CON> state with s.state = *.’state code’ and
CON> s.capital = c.city
CON> print s.capital | ' has a population of ' |
CON> c.population
CON> end_procedure
QLI> :capital_info

Enter state code: AZ

Phoenix has a population of 789704

You may encounter the following messages when you use the
define procedure statement:
* Procedure name <name> in use
Choose another name.
* Procedure name over 31 characters
Choose a shorter name.
* Gds_$create_blob failed

InterBase could not create the field in which the procedure
text is stored. Try again.

You may get the following errors when you execute a proce-
dure:

* Procedure <name> is undefined

The procedure does not exist as specified. Type show proce-
dures for a list of procedures.

Qli Statements and Commands

See Also

Define Procedure

® Procedure <name> not found

The procedure does not exist as specified. Type show proce-
dures for a list of procedures.

For a complete discussion of procedures, see the chapter on using
procedures in the Qi Guide.

For more information on line continuation characters, see the
introductory chapter of the QIi Guide.

See the entries in this chapter for:

e copy procedure
¢ edit procedure
¢ delete procedure

¢ rename procedure

Qli Statements and Commands 3-35

Define Relation

Define Relation

Function

Syntax

Options

3-36

The define relation statement creates a relation and several
types of fields for the relation, or copies an existing relation. The
based on clause of the define relation statement lets you cre-
ate relations based on relations. This command copies field
names and field characteristics from the old relation to the new
one. It does not copy triggers, indexes, or data.

Note

When you specify a new relation be based on a view defi-
nition, qli defines the new relation as a regular stored
relation. It does not define the relation as a view.

define relation [dbhandle.]relation-name
field-description-commalist
field-description: :=

{included-field | new-field | renamed-field}
included-field: :=

field-nameledit-string] [query-name]

new-field: :=

field-name datatypeledit-string] [query-name]

renamed-field: : =
field-name based on field-name
[edit-string] [query-name]

relation-name
Names the relation you want to create or copy. A relation name
can contain up to 31 alphanumeric characters, dollar signs ($),
and underscores (_). However, it must start with an alphabetic
character, and its name must be unique among relation names
in the database.

field-description-commalist
Specifies the name(s) you want for the field(s) in the relation.
The define relation statement supports several types of field
definitions, all of which you can use in the same relation defi-
nition.

Qli Statements and Commands

Example

Define Relation

included-field
Included fields are defined in previous define field or define
relation commands.You can define local attributes for
included fields or accept the attributes defined previously.
Local attributes override global attributes. Field attributes are
described in the entry for field-attributes in this chapter.

new-field
New fields are defined in the relation. This clause defines a new
field within the relation, instead of using existing fields.
Because the field is defined from scratch, you must include the
field’s datatype. Qli adds these fields to the list of global fields
for that database. You can use those fields in subsequent rela-
tion definitions.

renamed-field
This clause renames an existing field for use in the relation
being defined. The field retains all characteristics except those
you change explicitly. You can include an edit string and query
name. If you specify a local attribute that conflicts with the
attribute defined for the global field, the local attribute over-
rides the global attribute.

database_handle
Specifies the database handle you assigned to the database
when you readied it. You can use this name to qualify the rela-
tion name when you are using multiple databases. If you do not
specify a handle, qli looks at the most recently opened data-
base for a relation with the name you provided. To avoid confu-
sion when using more than one database, always use database
handles to qualify both the new and existing relations.

The following example defines several fields and shows how to
use them in the define relation statement:

QLI> define field state_char[2]

QLI> define field state_name varying [25]
QLI> define field city varying[25]

QLI> define relation states

CON> state,

CON> state_name,

CON> area long,

CON> statehood char([4],

CON> capital based on city

Qli Statements and Commands 3-37

Define Relation

The following example uses the define relation command with
the based on clause to copy an existing relation:

QLI> ready phone.gdb
QLI> define relation personal_numbers
CON> based on relation phone_numbers

Troubleshooting You may encounter the following messages when you use the
define relation statement:

* Relation <relation-name> already exists

The name you chose for the relation is already in use in this
database for a relation or a view. Use a different name and
try again.

¢ Global field <field-name> already exists

The name you chose for the field is already in use in this data-
base for another field. Use a different name and try again.

* No datatype specified for field <field-name>

You failed to provide a datatype for the field. For a list of
datatypes, see the entry in this chapter for field-attributes.

However, the problem may be that you hit the carriage
return prematurely. The define relation command’s field
definition clause expects a datatype on the same line or on a
continuation line. Use a hyphen to continue a line or the
semicolon option on the set command.

* Expected field definition clause, encountered "string”

You specified a field name that began with a non-alphabetic
character or you included an unrecognized attribute in the
definition. If the former case is true, change the field name so
it starts with an alphabetic character. If the latter case is
true, check the command and make sure that you have
included a valid attribute.

See Also See the chapter on defining data in the QIi Guide.

See also the section on field attributes in this chapter.

3-38 Qli Statements and Commands

Delete

Function

Syntax

Options

Examples

Delete

The delete statement erases one or more records in a relation.

If you do not provide a search condition, InterBase deletes all
records in the specified relation. Be very careful with this state-
ment.

You cannot delete records directly from a view that is a join: you
must erase them through each participating relation separately.
You can delete records from a view if the view is comprised of a
single relation (without a reflexive join) or if the database
designer included an erase trigger for the view.

delete from relation-name [alias]
[where predicate]

relation-name
Specifies the relation from which a record is to be deleted.

alias
Qualifies field references with an identifier that indicates the
source relation. The alias can be useful if predicate references
sources with overlapping field names.

The alias can contain up 31 characters that can be alphanu-
meric, dollar signs ($), and underscores (_). However, it must
start with an alphabetic character.

where predicate
Determines the record(s) to be deleted. If you provide a search
condition with the optional where predicate clause, InterBase
deletes the record(s) selected from relation-name.

The following statement deletes all records from the CITIES rela-
tion with a value for POPULATION of less than 100,000:

QLI> delete from cities -
CON> where population < 100000;

The following statement deletes the entire TERRITORIES rela-
tion:

QLI> delete from territories;

Qli Statements and Commands 3-39

Delete

Troubleshooting

See Also

3-40

The following example deletes all qualifying records:

QLI> delete from ski_areas -
CON> where name = ’‘Birchwood Slopes’;

You may encounter the following messages when you use the
delete statement:
e Can’t erase from a join

You tried to erase from a join. This is an illegal operation. If
you want to erase records in different relations, you must do
so in separate statements for each relation.

* No context for ERASE

You did not provide a record selection expression. Try again.
See the entries in this chapter for:
¢ predicate

* select expression

Qli Statements and Commands

Delete Metadata

Delete Metadata

Function

Syntax

Usage

The delete metadata commands erase the specified database
entity and all data associated with that entity. Therefore, you
must be very sure that you want to delete something before you
do it.

Although objects can be deleted from an active database, it is
generally better to wait until the database is not in use if you
want to delete relations and indexes.

delete {field field-namel|index Iindex-namel
relation relation-name}

The following are the usage rules for the delete metadata com-
mands:

* You can delete a field that was defined in a define field or
define relation command. However, because fields are
included in a relation, you must first delete the field from
each relation in which it is included. The following commands
delete a field from a relation and then from the database:

QLI> modify relation states
CON> delete field statehood
QLI> delete field statehood

* You must explicitly delete a field defined in a define
relation command after dropping it from relations in which
it is used. For example, suppose you defined the field
BIRTH_DATE in an EMPLOYEES relation, subsequently
included it in another relation, and then decided not to
keep it.

The following sequence deletes the field from all its instances
and then finally from the database itself:

QLI> modify relation employees
CON> drop field birth_date

QLI> modify relation demographics
CON> drop field birth_date

QLI> delete field birth_date

Qli Statements and Commands 3-41

delete command:field option

Do not drop fields from relations unless you are sure that
nothing else depends on their data. Dropping fields causes
programs that depend on them to fail. InterBase returns an
error if you try to delete a field used in a computed field, view
or trigger definition.

You can delete any index you want. If you try to delete an
index in use, your command does not complete until the index
can be deleted. The followoing command deletes an index:

QLI> delete index 1dx4

You can delete any relation you want. If you try to delete a
relation inuse, your command does not complete until the
relation is free and can be deleted. Programs relying on rela-
tions that have been deleted fail when they attempt to refer-
ence a deleted relation. Because the delete relation
command immediately removes a relation and all its records,
you should use this command with caution. The following
commands delete relations:

QLI> delete relation gudgeons
QLI> delete relation non_eeoc_approved_data

InterBase treats views much like relations. In fact, the syn-
tax for deleting a view uses the word relation. When you
delete a view, other users should not encounter any problems
if they are already running their programs. If they start up a
program that references the deleted view, the program fails
when it tries to compile the request that mentions that view.

Example The following commands delete views:

QLI> delete relation population_density
QLI> delete relation geo_cities
QLI> delete relation riv_vu

Troubleshooting You will encounter an error message if the database entity you
want to delete does not exist. If you receive such a message, check
to see if you have spelled the name correctly.

See Also See the entries in this chapter for:

3-42

define field
define index

define relation

Qli Statements and Commands

Delete Procedure

Delete Procedure

Function

Syntax

Options

Example

Troubleshooting

The delete procedure command deletes a stored procedure.

delete procedure [database-handle.]
procedure-name

procedure-name
Specifies the procedure you want to delete.

database-handle
Specifies the database handle you assigned to the database
when you readied it. You can use this name to qualify the pro-
cedure name when you are using multiple databases. If you do
not specify a handle, qli looks at the most recently opened data-
base for a procedure with the name you provided. If it can’t find
the a procedure there, qli continues its search backwards
through the databases you opened. If you forgot to assign a
database handle and want to use one, use the default handle
assigned by qli. Type show databases for a list of handles asso-
ciated with each database.

The following example deletes a procedure:
QLI> delete procedure sunbelt_cities

If you happen to acquire a procedure with an illegal name, such
as “*” or “3”, you cannot use the delete procedure command.
Instead, you must use the erase command to delete it or the
modify command to change its name.

The procedure is stored in the relation QLISPROCEDURES, and
its name is stored in the QLISPROCEDURE_NAME field. The
following statement deletes a procedure named “*”:

QLI> for gliSprocedures with -
CON> qgliSprocedure_name = '*'
CON> erase

Be sure you qualify the record selection expression so you delete
only the offending procedure.

Qli Statements and Commands 3-43

Delete Procedure

See Also

3-44

You may encounter the following message when you use the
delete procedure statement:

Procedure <name> not found

The procedure does not exist as specified. Type show procedures
for a list of procedures.

See the QIi Guide for a comprehensive discussion of procedures.

See also the entries in this chapter for:

copy procedure
define procedure
edit procedure

rename procedure

Qli Statements and Commands

Drop Database

Drop Database

Function
Syntax
Option

Example

Troubleshooting

See Also

The drop database statement deletes an entire database.

drop database filespec

filespec
Specifies the database you want to drop.

The following example deletes the entire database:

‘OLI> drop database phones.gdb

You may encounter the following message when you use the
drop database command:

No such file or directory

The file does not exist as you specified. Type show databases for
a list of databases.

See the discussion on defining metadata in the Qli Guide.

Qli Statements and Commands 3-45

Drop Index

Drop Index

Function The drop index command deletes an index.You cannot delete an
index in use in an active database. If you do so, InterBase returns
an error message.

Syntax drop index index-name

Option index-name
Specifies the index you want to delete.

Example The following example deletes an index:
QLI> drop index statesnames;

Troubleshooting You may encounter the following message when you use the
drop index command:

Index "index-name"is not defined in database "database-name”
Type show indexes for a list of relations and their indexes.

See Also See the discussion of metadata operations in the Qli Guide.

3-46 Qli Statements and Commands

Drop Table

Drop Table

Function The drop table command deletes a relation. You cannot delete a
relation in use in an active database. If you do so, InterBase
returns an error message. This statement also deletes all indexes
for the relation and any views that reference it.

Syntax drop table relation-name

Option relation-name
Specifies the relation to drop.

Example The following examples deletes a relation:
QLI> drop table tourism;

Troubleshooting You may encounter the following messages when you use the
drop table command:

e field "field-name” cannot be deleted because "n" view(s)
depend on it
Type show views for a list of views and their fields.

® exprected relation or view name, encounterd "relation-name”

The relation does not exist as you specified. Type show
relations for a list of relations.

See Also See the discussion of metadata operations in the QIi Guide.

Qli Statements and Commands 3-47

Drop View

Drop View

Function The drop view command deletes a view. This command also
deletes any other views that reference the deleted view. However,
the relations that comprise the view are not affected.

Syntax drop view view-name

Option view-name
Specifies the view you want to drop.

Example The following example deletes a view:
QLI> drop view colonies;

Troubleshooting You may encounter the following messages when you use the
drop view command:

expected relation or view name, encountered "relation-name”

The view does not exist as you specified. Type show views for a list
of views and the fields they are comprised of.

See Also See the discussion of metadata operations in the Qi Guide.

3-48 Qli Statements and Commands

Edit

Function

Syntax

Options

Example

Edit

The edit command calls your default text editor, places the con-
tents of a gli command or statement in the editing buffer, and
then deposits you in that buffer. You can then revise the qli com-
mands or statements.

Use the standard editing commands to change the command line
as you want. When you finish éditing, exit from the editor as you
normally do. You can also use this command to repeat the previ-
ous command. To do so, invoke the editor by issuing the edit com-
mand and then exit without making any changes. In most cases,
qli automatically executes the command.

The exception is for systems that use the vi editor. Vi does not
distinguish between an unchanged filed and an aborted eidt. On
these systems, you must change something to cause gli to re-exe-
cute the command from the edit buffer.

edit [iInteger|¥*]

integer
Places the last n commands in the editing buffer. For example,
edit 5 puts the last five commands in the buffer.

*

Places all commands issued during your qli session into the
editing buffer.

The following example corrects a syntax error:

QLI> for cities with state = New York
** QLI> error: expected end of statement,
encountered "YORK"

QLI> edit

Qli Statements and Commands 3-49

Edit

Troubleshooting

See Also

3-50

Qli calls your default editor. To fix this query, change the state
name New York to its abbreviation NY. Once you exit from the
editor, qli executes the query and displays the records:

QLI>

Albany
Buffalo
New York

The only errors you receive from this command are those gener-
ated by your editor. Problems can include a lack of disk space or
protection violations that prevent the editor from opening a
scratch or journal file.

See the documentation for the text editor you use.

Qli Statements and Commands

Edit Procedure

Edit Procedure

Function

Syntax
Option

Example

The edit procedure command lets you change a stored proce-
dure or create a new one.

When you issue the edit procedure command, qli calls your
default editor. If the procedure already exists, qli writes the text
of the procedure to the editing buffer. The buffer does not include
the define procedure and end_procedure structure. Use the
standard editing commands to change the procedure.

If the procedure does not exist, qli opens an empty edit window
or buffer. Enter qli commands or statements. Do not use the
define procedure and end_procedure commands that you
would use to define a procedure at the QLI> prompt; qli supplies
these commands for you.

When you finish editing a procedure or inserting a new one, exit
from the editor as you normally do. Qli automatically stores the
procedure in the database.

Note

When you edit a procedure, qli first searches all open
databases for a procedure with that name. If it finds one,
qli puts the text in the edit buffer and allows you to mod-
ify that procedure. If gli cannot find the procedure you
name, it creates a new procedure in the most recently
readied database. To avoid confusion, use database han-
dles when working with several procedures.

edit [database-handle.]procedure-name

[database-handle.] procedure-name

Names the procedure you want to edit or create. The optional
database handle specifies the database in which the procedure
is stored.

The following example calls the default editor and writes the text
of the high_cities procedure to the editing buffer:

QLI> edit high_cities

Qli Statements and Commands 3-51

Edit Procedure

Troubleshooting You may get error messages from your editor. Possible problems
include a lack of disk space or protection violations that prevent
the editor from opening a scratch or journal file. You may also
encounter the following messages when you use the edit proce-
dure command:
® Procedure name <name> in use
Choose another name.

* Procedure name over 31 characters
Choose a shorter name.

o Gds_$create_blob failed

InterBase could not create the field in which the procedure
text is stored. Try again.

See Also See the Qli Guide for a comprehensive discussion of procedures.
See also the entries in this chapter for:

e copy procedure
¢ define procedure
e delete procedure

e rename procedure

3-52 Qli Statements and Commands

Erase

Function

Syntax

Options

Examples

Erase

The erase statement removes from the database the record(s)
specified by the record selection expression.

You cannot erase records directly from a join: you must erase
them through each participating relation separately. You can
delete records from a view if the view is comprised of a single
relation (without a reflexive join) or if the database designer
included an erase trigger for the view.

erase([all of] rse]

all of rse
Specifies which records specified record selection expression
are to be deleted:

¢ Ifyou do not specify an RSE, you must select the record or
records to be deleted in an outer for loop.

¢ If you do specify an RSE, you must provide a complete
record selection expression in the erase statement.

* Do not erase records whose RSE includes a reduced to
clause.

The following example identifies the record to be deleted in an
RSE in the erase command itself:

QLI> erase all of cities with population < 1000 or
CON> population missing

The following example usés a for loop to identify the record you

want to erase:
<

QLI> for cities with population < 100000 or
CON> population missing

CON> Dbegin

CON> print

CON> 1if *.’keep 1t?’ containing ’'n’ erase
CON> end

Qli Statements and Commands 3-53

Erase

Troubleshooting

See Also

3-54

You may encounter the following messages when you use the
erase statement:
e Can’t erase from a join

You tried to erase from a join. This is an illegal operation. If
you want to erase records in different relations, you must do
so in separate statements.

* No context for erase

You did not provide a record selection expression. Correct the
statement using an edit command and try again.

See the entries in this chapter for:

e for

e record selection expression

Qli Statements and Commands

Exit

Function

Syntax

Example

Troubleshooting

See Also

Exit

The exit command commits the current transaction, closes all
databases, and ends the qli session.

Exit and the end-of-file character are exactly equivalent. The
end-of-file characters are system-dependent (and user-dependent
on some systems):

e Control-Z for VAX/VMS, MicroVMS, and Apollo

e Control-D for ULTRIX and other UNIX systems

exit

QLI> exit

See the discussion of errors and error handling in Chapter 1 of
the Qli Guide.

See the entries in this chapter for:
¢ quit
e commit

¢ finish

Qli Statements and Commands 3-55

Field Attributes

Field Attributes

Function The field attributes clause describes the characteristics of fields
defined or modified by the following statements:

e define field
¢ modify field
e define relation

e modify relation

Syntax field-attributes ::= datatypeledit-stringl
query-name}

The following sections describe the three optional clauses for the
field-attributes clause:

¢ Datatype clause

e Edit-string clause

* Query-name clause

Datatype Clause
Function The datatype clause specifies the datatype of a field.
Syntax datatype ::= {short [scale-clause] |
long [scale-clause] | float | double | char[n] |

varying[n)] | date | blob}

scale-clause ::= scale[-]n

The following table lists the datatypes by size and range/preci-
sion.

3-56 Qli Statements and Commands

Field Attributes

Table 3-5. Datatype Size and Precision

Datatype | Size Range/Precision
short 16 bits -32768 to 32767
long 32 bits -2**31 to (2%*31)-1
float 32 bits Approximately 7 decimal digits
double 64 bits Approximately 15 decimal digits
char{n] n bytes 0 to 32767 characters
varying[n] | Varies up to n bytes | 0 to 32767 characters
date 64 bits 1 January 100 to 11 December 5941
blob Varies None
Qli supplies a segment length of 40 for blobs. If this length is not
adequate, use gdef or modify the system relation directly.
scale-clause
the power of 10 by which InterBase multiplies the stored inte-
ger value for use by qli, COBOL, and PL/I.
For example, a negative scale of two means that there should be
a decimal point two places to the left of the rightmost digit (that
is, in the normal format for dollars and cents).
Example The following statements define fields with various datatypes:

QLI> define field tolerance long scale -2

QLI> define relation parts
CON> item_code charl[6],
CON> item_name char[25],
CON> manufacturer char[10],
CON> blurb blob,

CON> price long,

CON> tolerance

l

Qli Statements and Commands 3-57

Field Attributes

Edit String Clause

Function The edit string clause specifies an alphabetic, numeric, or date
format for a field.
Syntax edit_string "edit-character..."
edit_character::= see Tables 3-6, 3-7, and 3-8
edit-character
The following tables list available edit strings by datatype. Qli
also supports a missing value edit string: see the discussion of
Formatting Value Expressions inthe QIi Guide for more infor-
mation.
Table 3-6. Alphabetic and Miscellaneous Edit String Characters
Character Meaning of Edit String
A (integer) Any alphabetic character. For example, “aaabxxba” yields
“HAL 14L” from the value “HAL14L.” Qli returns an error if
the characters are not alphabetic.
x(integer) Any printing character, including special characters. See
“A” above for an example.
B(integer) A blank space. See “A” above for an example.

A hyphen. For example “aaa-xx-a” yields "THAL-14L” from
“HAL14L.”

‘string’ or “string”

Print the quoted string. For example, print “1234” using
9“abc”999 prints out “labe234.”

3-58

Qli Statements and Commands

Field Attributes

Table 3-7. Numeric Edit String Characters

Character | Meaning of Edit String Character

9(integer) | An ordinary digit. For example, “9999.99” yields “0832.79” for the
value “83279” if it has a scale of -2. With an integer value of scale 0, it
prints a numeric overflow.
Decimal point. See “9” above for an example.

B(integer) | Blank space.

, Comma for thousands, millions, etc. For example, “99,999.99” yields
“65,832.79” from the value 6583279.

z(integer) | A leading digit or blank if the leading position is zero.

+ Leading plus sign. Prints leading sign for positive and negative num-
bers. This sign takes up one character space.

- Leading minus sign. Prints leading sign for negative numbers only.
The sign takes up one character space.

$ Leading dollar sign. Multiple dollars sign “floate” so and edit string of
“$$$$$$.99” yields ”$123.45,” “$12.34” for “12.34,” and “$1234.56” for
“1234.56.” This sign takes up one character space.

* A leading asterisk (for checks). This sign takes up one character
space.

H(integer) | Hexadecimal representation of a character.

(0)) Parentheses to print around negative numbers.

DB Prints DB for debit after negative numbers.

CR Prints CR for credit after negative numbers.

“»

Quoted strings can be include in a number. For example, print 37.95
using $$99.99b”tsk!btsk!” prints “$37.95 tsk! tsk!”

Qli Statements and Commands 3-59

Field Attributes

Table 3-8. Date Edit String Characters

Character

Meading of Edit String Character

Y(integer)

The year, from right to left. For example, the field value “1987”, “y(1)”
yields “7” and “y(2)” yields “87.”

M(integer)

The name of the month. The integer specifies how many of thecharac-
ters in the month name to print. For example, “m(3)”yields “Jan.”

N(integer)

The numeric month. The best value for the integer is 2. For example,
“n(2)” yields ”01” for January and "11” for November.

D(integer)

The day of the month. The best value for the integer is 2. For example,
“d(2)” yields ”01” and “11” for the first and eleventhdays of the month.

W(integer)

The name of the day of the week. The integer specifies how many of
the characters in the day name to print. Theminimum value for the
integer should be 2. For example, “w(2)” yields "Mo.”

B

A blank space. A “b” in a date edit string enchances readability. For
examle, “d(2)bm(3)by(4)” yields dates formattedas “29 May 1956.”

J(integer)

The Julian day of the year. For example, “01” is 1 January and “32” is
1 February.

T(integer)

The time portion of a date field. Unless you append the P editstring
discussed below, the time is based on a 24-hour clock.You must supply
your own punctuation. For example,“t(2):t(2):t(2)” yields time format-
ted as “14:23:31.”

P[P]

Changes the T time display to a 12-hour clock followed by themeridian
value (ante or post). If you specify only one P, itdisplay A or P. Other-
wise it displays AM or PM. You mustsupply your own punctuation.
For example, tt:tt:bpp” yields time formatted as “2:23:31 PM.

X(integer)

The date and time portion of a date field, based on a 24-hour clock. Qli
supplies the punctuation. For example, “x(25)” yields date formatted
as 23-SEP-1987 15:38:11.9721.

Example

3-60

The following commands define a database and three relations,
each containing several fields with edit strings:

QLI> define database "stuff.gdb"
QLI> define relation budgets

CON> bl long,

CON> b2 long edit_string "999,999",

Qli Statements and Commands

Field Attributes

CON> b3 long edit_string "((999,999))",
CON> b4 long edit_string "-22%,22%Z,72729"

QLI> define relation employee_stuff

CON> social_security char [9] edit_string -
CON> "xXXX-XX-XXXX",

CON> phone_number char [10] edit_string -
CON> " (xXXX)BxXxx-xxXxx",

CON> salary long edit_string -

CON> "HHHHHHHHHBBB"

QLI> define relation family_dates

CON> name varying [107,

CON> birth date edit_string -

CON> "w(3),bd(2)bm(12)by (4)",

CON> wedding date edit_string "d(2)bn(2)by(4)",
CON> awareness date edit_string "y (4)"

Query Name Clause

Function

Syntax

Examples

The query name clause provides an alternate field name for use
in gli. You can reference a field by its full name or by the query
name.

You may find that the longer the name, the more likely interac-

tive users are to mistype it. However, for reasons of internal doc-
umentation, you might want to keep the name as descriptive as

possible. Therefore, you can use a query name to rename the field
to something easier to type.

query_name[is] alternate-name

alternate-name
A query name can contain up to 31 characters that can be
alphanumeric, dollar signs ($), and underscores (_). However,
it must start with an alphabetic character.

The following statement defines a field with a query name:

QLI> define field longitude_degrees char[2] -
CON> query_name longd

Qli Statements and Commands 3-61

Field Attributes

The following statement defines a relation and assigns a query
name to six fields:

QLI> define relation cities
CON> city,

CON> state,

CON> population,

CON> latitude_degrees char[2] -
CON> guery_name latd,

CON> latitude_minutes char[3] -
CON> query_name latm,

CON> latitude_compass char[1l] -
CON> query_name latd,

CON> longitude_degrees char[2] -
CON> query_name longd,

CON> longitude_minutes char[2] -
CON> query_name longm,

CON> longitude_compass char[2] -
CON> query_name longc

Troubleshooting See the discussion of errors and error handling in Chapter 1 of
the Qi Guide.

See Also See the entries in this chapter for:
¢ define field
¢ define relation
* define view
* modify field
¢ modify relation

3-62 Qli Statements and Commands

Finish

Function

Syntax

Examples

Troubleshooting

Finish

The finish command explicitly closes a database.

If you close a database and want to access it later, you must ready
it again.

finish [database-handle-commalist]

database-handle
Specifies the database to close. If you do not specify a database
handle, the finish command commits all default transactions
and closes all open databases.

If you close a specific database, InterBase commits the default
transaction for that database.

If you neglected to declare a database handle when you opened
the database, you can use the default handle declared by gli.
Use the show databases command to display the name of the
handle that qli declared for the database.

The following command closes all open databases:
QLI> finish

The following example readies two databases, performs some
data manipulation, and closes one of the databases:

QLI> ready /usr/case/databases/atlas.gdb as atlas
QLI> ready maps.gdb as map

U

QLI> finish atlas

You may encounter the following message when you use the fin-
ish command:

Expected database handle, encountered <string>

You need a database handle. You may have mistyped the handle.
Type show databases to check the database handle.

Qli Statements and Commands 3-63

Finish

See Also See the entries in this chapter for:
* ready
* commit
¢ rollback
3-64

Qli Statements and Commands

For

Function

Syntax

Options

Examples

For

The for statement evaluates a record selection expression and
executes a substatement for each qualifying record.

You can nest for loops to display a hierarchy of records or to join
relations across databases.

for rse gli-statement

rse
Provides the record selection criteria to form a record stream.

gli-statement
Any of the qli statements or any procedure containing state-
ments.You cannot use a command or a procedure containing
commands as the action of an if-else statement.

The following example creates a record stream for loop and dis-
plays records from that stream:

QLI> for states sorted by state
CON> print capital, state, statehood

The following example joins two relations:

QLI> for states cross cities over state sorted -
CON> by city
CON> print city, state, altitude, population

The following example uses a for loop to select records to be
erased and then erases them:

QLI> for ski_areas with state = 'FL’
CON> erase

The following example picks up a value from an outer loop, prints
it, and then prints associated values from another relation in an
inner loop:

QLI> for r in rivers sorted by river
CON> begin

CON> print river

CON> for rs in river_states with -

Qli Statements and Commands 3-65

For

Troubleshooting

See Also

3-66

CON> r.river = rs.river
CON> print state
CON> end

The following example is equivalent to a join operation across
databases:

QLI> ready apollo:/usr/data/mapper.gdb as mapper
QLI> ready atlas.gdb as atlas

QLI> for s in atlas.states sorted by s.state
CON> begin

CON> for ¢ in mapper.cities with

CON> s.state = c.state

CON> print s.state_name, c.city, c.population
CON> end

Note

You cannot reference relations from more than one data-
base in a record selection expression. Use for loops to
combine relations across databases.

You may encounter the following message when you use the for
statement:

* Relations from multiple databases in single rse

* Can’t mix databases within RSE

You tried to access more than one database in the same
record selection expression. Use nested for statements to do
that.

See the entry in Chapter 2 for record selection expression.

Qli Statements and Commands

For Form

Function
Syntax

Options

Example

For Form

The for form statement specifies that a form be used to accept
or display data.

for form [context-variable in] form-name
gli-statement

context-variable
The context variable qualifies references to the form fields to
distinguish them from database fields or program variables.

form-name
Specifies the form to bind. The form name must be the name of
a form already defined in a database. If you include a database
handle, the form must be in that database. Otherwise, qli
searches databases referenced by the program, beginning with
the most recently declared database.

gli-statement
Any of the qli statements or any procedure containing state-
ments.You cannot use a command or a procedure containing
commands as the action of an if-else statement.

The gli-statement can be any qli statement, but most often is a
begin-end block. It usually contains one or more accept
statements or form field assignments.

The following example displays a form to accept the input of a
state code, and then displays a form to data from cities in that
state:

QLI> for form f in cities

CON> begin

CON> accept ("Enter state code,

CON> then <enter>") state

CON> for c in cities with c.state = f.state
CON> begin

CON> f.state = c.state

CON> f.city = c.city

CON> f.altitude = c.altitude

CON> f.latitude = c.latitude

Qli Statements and Commands 3-67

For Form

Troubleshooting

See Also

3-68

CON>
CON>
CON>
CON>
CON>

f.longitude = c.longitude

accept ("Hit <enter> to continue
or <fl> to stop")

end
end

You may encounter the following messages when you use the for
form statement:

Form <form-name> is not defined in database “file-spec”

The form name you specified does not exist in the database.
Check the spelling of the form name and try again.

See the chapter on using forms with GDML in the Forms Guide.

See also the entries in this chapter for:

® accept

e for form

e for menu

Qli Statements and Commands

Grant

Grant

Function The SQL grant command defines user privileges for designated
tables and views. It can also grant a user the ability to pass along
privileges. A relation’s owner is the only user to have automatic
grant authority for that relation. To pass the ability to grant priv-
ileges to a user, the grant command must contain the with
grant option clause.

Syntax grant privilege-comma-1ist on relation-namel|view-
name to user [with grant option]
privilege::= {all [privileges] |select|delete]
insert |update (column-1list)}
user: :=public|userid-comma-1ist

Options privilege-comma-1ist

Allows user to specify the following operations:
Privilege Authority
All Selects, deletes, inserts, updates
Select Retrieves records from table or view
Delete Eliminates records from table or view
Insert Stores new records in table or view
Update Changes value of one or more fields in existing table or view

relation-name
Specifies the relation to which you assign privileges

view-name
Specifies the view to which you assign privileges. Because a
view is only a window into one or more base relations, you can
never grant a user more privileges on a view than that user has
to the base relation or relations.

public/userid
Specifes which authorized users have access to privileges for a
table or view. Public incorporates all authorized user ids.

Qli Statements and Commands 3-69

Grant

Usage

Examples

Troubleshooting

See Also

3-70

with grant option
Passes grant authority along to the user(s) specified in the
grant statement. This is valid for only those privileges autho-
rized in the grant statement.

Once you have secured a table using SQL, you should use only
SQL to further secure it. Do not use the InterBase security class
system in combination with SQL security.

The following example grants select and delete privileges to a
user and gives that user the authority to grant other users select
and delete privileges:

QLI> grant select, delete on cities to julie with
CON> grant option;

The following example grants update privileges to a user for spe-
cific fields in a relation:

QLI> grant update state_name, capital on states to
CON> john;

You may encounter the following errors when you use the grant
command:
* expected relation name, encountered “string”
You typed the relation name incorrectly.
* expected on, encountered “string”
You typed a privilege incorrectly.

* QLI error from database “filename”

unsuccessful metadata update
-STORE RED$USER_PRIVILEGES failed on gran
-action cancelled by trigger (1) to preserve data integrity

You do not have privilege to grant the privilege or privileges
you tried to grant.

See the entry for revoke in this chapter.

Qli Statements and Commands

Help

Function

Syntax

Options

Usage

Help

The help command provides assistance on gqli commands and
statements. If you ask for help without specifying a command or
statement, gqli displays a listing of what help is available. If you
ask for help on a subject for which there is no assistance, qli tells
you that no help is available for that subject.

InterBase’s help is structured hierarchically, so you may not find
what you are looking for on the first try. For example, suppose
you want to look at the help entry for the arithmetic-expression
value expression. There is no entry for this topic, but there is one
for value_expression. When you ask for help on value expressions,
the text notes that there is additional help available for arithmet-
ic_expression.

Note

The first time you ask for help, there may be a slight
delay as InterBase readies the database containing the
help topics.

help [(gli command | gli-statement]

qli-command
Specifies the qli command for which you want help.

gli-statement
Specifies the qli statement for which you want help.

You can edit the help files, add new topics, or delete existing ones.
For example, you may want to replace frivolous examples with
ones more closely tied to your application, or document proce-
dures that you want everyone to use.

To edit the help files, add new topics, or delete existing topics,
invoke qli and ready the help database:

Operating System Pathname

VMS sys$help:help.gdb

Apollo /interbase/help/help.gdb

Qli Statements and Commands 3-71

Help

3-72

Operating System Pathname

UNIX /usr/interbase/help/help.gdb

Use the show commands to see the record structure of the help
database:

QLI> show fields
Database "help.gdb"

TOPICS

TOPIC text, length 31

PARENT text, length 31
FACILITY text, length 6
SYSTEM_FLAG text, length 1

TEXT blob, segment length 80

The database help.gdb contains all the help topics. Now that you
have readied the help database, you can manipulate it as you
would any database.

To modify a topic, select the record with an RSE and change field
values. For example:

QLI> modify text of topics with topic = STORE

Qli calls your default editor. Make the changes you want, then
exit from the editor in the normal manner.

To store a new topic, use the store or insert statement. For
example:

QLI> store topics
Enter TOPIC: LJUBJANKA
Enter SYSTEM_FLAG: X
Enter FACILITY: NKVD

Standard InterBase help topics have a system flag of “S”; your
messages should use some other flag value. You should back up
the help library before installing new versions of InterBase, so
that you can reintegrate your changes.

Use the erase statement to remove unwanted topics:

QLI> for topics with topic = SELECT
CON> erase

Qli Statements and Commands

Example

Troubleshooting

See Also

Help

As you enter new topics and modify existing ones, you should pay
attention to the form of the TOPIC name. Whenever someone
asks for help on a particular subject, the help facility in gli
searches through TOPICS for a match on the TOPIC field. mul-
tiple word topics cause problems in matching, so use underscores
between them.

You can structure a hierarchy for your entries. All qli statements
and many commands have a value of “QLI” for the PARENT field.
The expressions (value, record selection, selection, and scalar)
also have a value of “QLI.” However, the actual expressions, such
as arithmetic expression, have a value of “QLI VALUE_EX-
PRESSION?” for the PARENT field. If there were a subordinate
entry for arithmetic expression, its parent would be “QLI VAL-
UE_EXPRESSION ARITHMETIC_EXPRESSION.” When you
add your own entries, or update the standard ones, plan its par-
enthood well.

The following command displays the general help listing:

QLI> help

The following command displays help about the store statement:
QLI> help store

You may encounter the following message when you use the help
command:

No help is available for "subject."

The subject for which you requested help does not exist. Type
help for a list of topics.

See the entries in this chapter for:

e modify
* store
® erase

Qli Statements and Commands 3-73

If-Else

If-Else

Function
Syntax

Options

3-74

The if-else statement provides an if-then-else structure in gqli.
The then in the syntax is optional.

if boolean-expression [then] qgli-statement
[else gli-statement]

gli-statement
Any of the gli statements or any procedure containing state-
ments.You cannot use a command or a procedure containing
commands as the action of an if-else statement.

If there is more than one action you want to execute as a result
of the if, put the statements into a begin-end statement.

If there is an else, gli requires that you place a hyphen after
the end or that you place the else on the same line as the end.
For example:

if expression
begin
gli-statement
gli-statement

end else

begin
gli-statement
gli-statement

end

Because the else clause is optional, a statement of the form i £
boolean-expression[then] gli-statement is complete.
The else gli-statement that follows is read as a new state-
ment.

boolean-expression
Specifies a condition that must be true in order for the if to
be executed. If the condition is not true, the else branch is exe-
cuted.

Qli Statements and Commands

Examples

If-Else

The following statement is a simple case of an if-then construct:

QLI> for rivers

CON> begin

CON> print

CON> if length > average length of rivers
CON> print col 5, "At " | length |

CON> " miles it’s longer than your average river."
CON> end

The following statement uses nested for loops to walk through
the states relation looking for cities with fewer than a million res-
idents. Nested if statements cause it to produce an appropriate
message if there are 0, 1, or more small cities. For each small city,
another set of nested ifs print different messages for small, very
small, very small indeed, and totally negligible cities:

QLI> for states sorted by state_name

CON> begin

CON> declare counter long;

CON> counter = count of cities over state with
population < 1000000

CON> if counter = 0

CON> print skip,

CON> state_name | " has no small cities." else
CON> if counter 1

CON> print skip,

CON> col 1, state_name

CON> | " has one pretty small city." else
CON> print skip, col 1,
CON> state_name | " has some pretty small cities.

CON> For example: "

CON> for cities with population < 1000000 and
CON> state = states.state sorted by population
CON> if population < 10000 then

CON> print col 5,

CON> city | " is particularly dinky." else
CON> if population < 100000 then

CON> print col 5,

CON> city | " is pretty small." else

CON> if population < 500000 then

CON> print col 5,

CON> city | " is a biggish small city." else
CON> print col 5,

Qli Statements and Commands 3-75

If-Else

3-76

CON> city | " is quite a big small city."
CON> end
The output follows:

Alabama has some pretty small cities. For example:
Montgomery is a biggish small city.
Birmingham is a biggish small city.

Alaska has one pretty small city.
Juneau is particularly dinky.

Arizona has one pretty small city.
Phoenix is quite a big small city.

Arkansas has one pretty small city.
Little Rock is a biggish small city.

California has some pretty small cities. For
example:
Fresno 1s a biggish small city.
Sacramento is a biggish small city.
San Francisco is quite a big small city.
San Diego is quite a big small city.

Colorado has one pretty small city.
Denver is a biggish small city.

Connecticut has no small cities.

Delaware has no small cities.

U

The following statement cleans up cities that were stored without
a population. At each city, the user is prompted to say whether
the city should be modified, deleted, or ignored. The repeat loop
gives the user a second (through fiftieth) chance when the choice
is out of bounds:

QLI> begin

CON> declare updchar [1];

CON> print skip, col 1, "Cleanup our cities."
CON> print skip, col 1,

CON> "Type D to delete the city, M to change its
CON> population,", skip,

CON> "or L to leave it alone"

CON> for cities with population missing

Qli Statements and Commands

If-Else

CON> begin

CON> print skip

CON> upd = "X"

CON> repeat 50

CON> begin

CON> if upd not in ("D", "M", "L") then

CON> begin

CON> print col 1,

CON> "What do you want to do to " | city | " " |
CON> state | "?2"

CON> upd = *."D[elete] / M[odify] / L[eave it bel"
CON> if upd = "D"

CON> begin

CON> print col 1, city | " " | state | " is gone"
CON> erase

CON> end else

CON> if upd = "M"

CON> modify using

CON> population = *."new value for population" else
CON> if upd = "L"

CON> print col 1, "ok by me" else

CON> print "Bad guess. Try again"

CON> end

CON> end

CON> end

CON> end

The output follows:

Cleanup our cities.

Type D to delete the city, M to change its
population,

or L to leave it alone

What do you want to do to Dover DE?

Enter D[elete] / M[odify] / L[eave it bel: X

What

Bad guess. Try again
do you want to do to Dover DE?

Enter D[elete] / M[odify] / L[eave it be]l: M
Enter new value for population: 53000

What

do you want to do to Tallahassee FL?

Enter D[elete] / M[odify] / L[eave it bel: D
Tallahassee FL is gone

Qli Statements and Commands 3-77

If-Else

What do you want to do to Boise ID?
Enter D[elete] / M[odify] / Lleave it bel: L
ok by me

What do you want to do to Springfield IL?

Enter D[elete] / M[odify] / L[eave it bel: 1
Bad guess. Try again

What do you want to do to Springfield IL?

U

Troubleshooting You may encounter the following message when you use the if-
else statement:

e Expected statement, encountered "command”
You cannot use a command with the if-else statement.
See Also Any of the gli statements in this chapter.

3-78 Qli Statements and Commands

Insert

Function

Syntax

Options

Insert

The insert statement that stores a new record into a relation.

If you are storing a record that contains a blob field, you cannot
use the insert statement to assign a value other than null to a
blob field. To store records with blob fields, use the GDML store
statement.

insert into relation-name [(database-field-
commalist)]
{values constant-commalist|select-statement}

relation-name
Specifies the relation into which you want to store a new
record.

You can insert into a view comprised of a single relation, or into
a view with a store trigger.

database-field
Lists the field in relation-name for which you are providing a
value. If you do not provide an insertion list, gqli assumes that
you want to store all fields in the record and stores them in
their default order. The default order is based on the value of
the RDB$FIELD_POSITION field in the RDBSRELATION_-
FIELDS system relation. See the Data Definition Guide for
more information about system relations.

If you want to store the missing value for a field, do not refer-
ence that field in the insert statement.

If the database field is a blob, you can only assign the null
value.

constant
Provides a value for database-field. You can assign field values
by inserting quoted strings, and quoted or unquoted numbers.

select-statement
Specifies that the values for the new record are to come from
the record identified by a select statement.

Qli Statements and Commands 3-79

Insert

Examples

Troubleshooting

3-80

The following statement inserts quoted values:

QLI> insert into ski_areas (name, type, city,
CON> state) '

CON>» values (’'Radar Acres’, ‘N’, ‘Dunstable’,
CON> 'MA’) ;

The following example stores a new record into CITIES, using
most of the values from an existing record:

QLI> insert into cities-

CON> (city, state, latitude_degrees,

CON> latitude_minutes,

CON> latitude_compass, longitude_degrees,
CON> longitude_minutes-

CON> longitude_compass)

CON> select ’'Troy’, state, latitude_degrees,
CON> latitude_minutes,

CON> latitude_compass, longitude_degrees,
CON> longitude_minutes,

CON> longitude_compass-—

CON> from cities where city = ‘Albany’ and
CON> state = 'NY’

The following statement stores a new record into CITIES, implic-
itly assigning the missing value to all unreferenced fields:

QLI> insert into cities-
CON> (city, state)-
CON> values (’'Lowell’, 'MA’);

The following statement stores a new record into TOURISM, but
does not reference the blob fields OFFICE or GUIDEBOOK,
thereby assigning the missing value to those fields:

QLI> insert into tourism-
CON> (state, zip, city)-
CON> values (’'NY’, ’10022', 'New York');

You may encounter the followint error when you use the insert
statement:

**QLI error: the number of values did not match the number of
fields

Your value list or select did not have the same number of entries
as the field list.

Qli Statements and Commands

Insert

See the error list in the entry for the assignment statement.

See Also See the entries in this chapter for:
¢ select
* store

Qli Statements and Commands 3-81

List

List

Function

Syntax

Options

Examples

3-82

The list statement displays fields from records in a record
stream. Unlike the print statement, it displays the field values
in a vertical format.

Standalone format

list value-expression-commalist of rse
[on 'filespec’|to shell-command]

Loop Syntax:

for rse
list value-expression-commalist

value-expression of rse
Specifies a list of fields or other values from the record stream
created by the record selection expression.

on ‘filespec’
Sends the output to the named, quoted file, rather than writing
it to your monitor.

to shell-command
Sends the output to standard input of the shell or command
interpreter command, rather than writing it to your screen.
These commands typically send the output to a printer, as in
print, 1pr, Ipt, prf, and ’prf -npag’. Note that if you include a
switch on the shell command, you must quote the entire com-
mand.

The following query lists all records in STATES:
QLI> list states
The following query includes a for loop that selects records:

QLI> for states with area 1t 10000
CON> list state_name, area

Qli Statements and Commands

Troubleshooting

See Also

List

The following query writes field values from STATES to the file
state_data.dat:

QLI> list state, capital, area of states on
CON> ’state_data.dat’

You may encounter the following messages when you use the list
statement:

* No items in print list

You must provide a record selection expression or value
expression.

* Can’t open output file.

Qli cannot open an output file for a print on filespec com-
mand.

See the entry in this chapter for print.

Qli Statements and Commands 3-83

Modify

Modify

Function

Syntax

Options

3-84

The modify statement updates a field or fields in a record or
records.

You can modify records from a view if the view is comprised of a
single relation (without a reflexive join) or if the database
designer included a modify trigger.

Standalone format:

modify dbfield-expression-commalist of rse

Substatement format:

modify{dbfield-expression-commalist|using
statement} [of rse]

Form format:

modify using form|[form-namel

dbfield-expression
Specifies the field you want to update. Qli prompts you for a
field value. If you choose the using option, you must supply
assignment statements.

statement
Ordinarily an assignment to a field or a begin-end block con-
taining assignments. However, a begin-end block in this posi-
tion can contain any type of statement.

If you want to modify a blob field, use either the edit option of
the assignment statement or qli’s prompting feature.

rse
Specifies record selection criteria.

Unless you use the standalone format, you must enclose the
modify command in a for loop that contains a record selection
expression.

Qli Statements and Commands

Examples

Troubleshooting

See Also

Modify

Do not modify records whose record selection expression
includes a reduced to clause.

using form [form-name]
Tells gli to use a form for assignments instead of statements.
This form of the modify statement can be used only inside a for
statement. If you do not supply a form name, qli looks for a
form with the same name as the relation. Failing to find that,
it returns an error.

The following statement modifies river lengths:

QLI> for rivers

CON> modify using begin
CON> print river

CON> length = *.length
CON> end

The following statements change the same record using the mod-
ify statement in different ways:

QLI> /* rse in modify statement */
QLI> modify population of cities with
CON> city = ’'New York’

Enter POPULATION: 10000000

QLI> /* rse in for statement */
QLI> for cities with city = ’'New York’
CON> modify using population = 10000000

QLI> modify population of cities with
CON> city = ’‘New York’
Enter POPULATION: 10000000

See the discussion of errors and error handling in Chapter 1 of
the Qli Guide.

See the entries in this chapter for:

e assignment
e for
¢ begin-end

Qli Statements and Commands 3-85

Modify Field

Modify Field

Function

Syntax
Options

Example

Troubleshooting

See Also

3-86

The modify field command changes the attributes of a global
field.

modify field field-name field-attributes

field-name
Specifies the global field you want to change.

field-attributes
Specifies the field’s datatype, query name, or edit string. The
datatype specification must precede other field attributes. See
the entry in this chapter for field attributes for more informa-
tion.

The following example modifies a global field:

QOLI> modify field party_affiliation query_name
CON> "party"

You may encounter the following message when you use the
modify field command:

Expected field definition clause, encountered "string”

You included an unrecognized attribute in the definition. If the
former case is true, change the field name so it starts with an
alphabetic character. If the latter case is true, check the com-
mand and make sure that you have included a valid attribute.

If you modify the datatype of a field to or from a blob, you will
receive a conversion error when you try to print the field.

See the entry in this chapter for field attributes.

QLI Statements and Commands

Modify Index

Function

Syntax

Options

Modify Index

The modify index command changes the uniqueness, active-
ness, or order of an index. If you want to add or drop fields from
an index, you must delete the index and then redefine it.

modify index index-name
[unique |duplicate]
[active]|inactive]
[ascending|descending]

index-name
Specifies the index you want to modify.

unique

Changes an index that allows duplicate index values to one
that does not.

If you make the index unique, you will receive errors during
index creation if there are duplicate keys. Before defining a
unique index, or modifying an index to be unique, find dupli-
cate keys. You can use a statement such as the following to do

S0:

QLI>
CON>
CON>
CON>
CON>
CON>
CON>

declare x based_on relation.name.key
x =0

for relation.name sorted by key
begin

if key = x print key

key = x

end

For large relations, creating an index with duplicates will sig-
nificantly reduce the time this winnowing process takes.

duplicate
Changes an index that disallows duplicates to one that allows

them.

active

Active changes an inactive index to an active one.

QLI Statements and Commands 3-87

Modify Index

Examples

Troubleshooting

See Also

3-88

inactive
Inactive changes an active index to an inactive one.

Because InterBase automatically maintains all indexes, you
may want to change an index to inactive if you are going to
store many records at one time. Once you have stored all your
records, reactivate the index.

ascending
Changes an index to ascending.

descending
Changes an index to descending.

The following statements modify indexes:
QLI> modify index state_idxl duplicate inactive
QLI> modify index river_idx_1 ascending

You may encounter the following message when you use the
modify index command:

Expected index state option, encountered "string”

The modify index command lets you change two characteristics
of an index. You specified something other than the supported
options. Check your command and try again.

Because the modify index command rebuilds the index, its exe-
cution may take a few minutes. If another user is running a
request that relies on the index, you cannot rebuild the index
until that request completes.

See the entry in this chapter for define index.

QLI Statements and Commands

Modify Relation

Modify Relation

Function

Syntax

Options

The modify relation command can change a relation’s comple-
ment of fields and local field characteristics.

modify relation relation-name operation-commalist
operation::={add field field-name
(field-attributes] |drop field field-namel|

modify field field-name [field-attributes]

relation-name
Identifies the relation you want to modify.

add field field-name
Adds a field to the relation:

¢ Ifthe field has already been defined in the database, field-
attributes can specify an edit string or a query name.

¢ Ifthe field does not exist elsewhere, you must specify a
datatype. You can also specify an edit string or query name.

The addition of fields to a relation is identical to the inclusion
of fields when you define the relation. See the entry for define
relation in this chapter for more information.

drop field field-name

Removes the named field from the relation. When you delete a
field from a relation, other users should not encounter any
problems if they are already running their programs. However,
if they start up a program that references the deleted field, the
program fails when it tries to compile the request that men-
tions that field.

You cannot delete fields that are used in views based on this
relation without first deleting the field from those views.

modify field field-name
Identifies the field whose relation-specific characteristics you
want to change. You can change only the edit string and query
name. You cannot change the datatype.

QLI Statements and Commands 3-89

Modify Relation

Example The following example modifies a relation by adding fields, drop-
ping fields, and modifying fields:

QLI> ready test_atlas.gdb

QLI> modify relation cities

CON> add field year_incorporated char[4]
CON> query_name inc,

CON> add field type_of_government char[1]
CON> guery_name gov,

CON> drop field population

Troubleshooting You may encounter the following message when you use the
modify relation command:

Expected field definition clause, encountered "string”

You specified a field name began with a non-alphabetic character
or included an unrecognized attribute in the definition. If the
former case is true, change the field name so it starts with an
alphabetic character. If the latter case is true, check the com-
mand and make sure that you have included a valid attributed.

See Also See the entry in this chapter for define relation.

3-90 QLI Statements and Commands

Prepare

Prepare

Function The prepare command signals your intention to commit the
default transaction. InterBase automatically issues a prepare
for qli sessions that involve multiple databases.

The prepare command is particularly useful for sessions that
access multiple databases or require coordination with external
events. It executes the first phase of a two-phase commit. The
InterBase access method polls all participants and waits for
replies from each. It checks to see that no other database activity
can affect the transaction. If the statement completes success-
fully, InterBase guarantees that a commit statement will exe-
cute successfully if the disk is still intact.

Syntax prepare [database-handle-commalist]

Options database-handle
Specifies a name you assign to a database when you ready it.
Use the handle to qualify database reference when you are
using multiple databases.

A prepare command without the optional database handle
prepares all open databases. If you assign a database handle
when you ready the database, you can use the handle to limit
the scope of the prepare to specific databases.

When you access more than one database in qli, InterBase
automatically starts up separate subtransactions for each
database. However, these appear to be a single transaction.
The optional database handle lets you control these subtrans-
actions explicitly by letting you prepare them by database.

Qli automatically assigns a default handle if you forgot to
assign a database handle when you ready the database.

Type the following to find out the default database handle
assigned by qli:

QLI> show databases
Database "atlas.gdb" readied as QLI_O

QLI Statements and Commands 3-91

Prepare

Example

Troubleshooting

See Also

3-92

Qli displays the names of all available entities, including data-
bases and handles. The default handles are in the form
"QLI_n," where n is a numeric integer. You can supply this
handle as an argument to the prepare command:

QLI> prepare gli_1

The following statements ready several databases, perform some
unspecified data manipulation, prepare to commit the transac-
tion, and then commit the transaction:

QLI> ready remote_database_1.gdb
QLI> ready local_database.gdb
QLI> ready remote_database_2.gdb

U

QLI> prepare
QLI> commit

You may encounter the following message when you use the pre-
pare statement:

Expected database handle, encountered <string>

You need a database handle. You may have mistyped the handle.
Type show databases to check the database handle.

See the entry in this chapter for commit.

See the OSRI Guide for information on the internal operations of
the prepare command.

QLI Statements and Commands

Print

Function

Syntax

Options

Print

The print statement displays fields from records in a record
stream. You can create the record stream in the print statement
itself or in an outer for statement. You can also display records
using forms.

Print format:

print print-list of rsel[on ’filespec’|to shell-
command]
print-list::=[distinct]print-element-commalist
print-element::= {format-token|qualified-value}
format-token: :={space [integer] |skip [integer]|
tab [iInteger] |col integer|new_page}
qualified-value::=value-expression [(query-
header|-)] [using edit-string]

query-header: :=quoted-string|[/quoted-string]

For ... print format:

for rse print print-list
[on ’"filespec’|to shell-command]

Forms print statement format:

print rse using form [form-name]

Forms for ... print statement format:

for rse print using form [form-name]

distinct
Prints only unique values or combinations of values specified in
the print list. The unique values are created through a project
relational operation. For information about the project opera-
tion, see the description of the reduce clause in the entry for
RSE.

QLI Statements and Commands 3-93

Print

3-94

space [integer]
Inserts one blank horizontal space in the output file. If you
specify the optional integer, qli inserts that many blank
spaces.

skip [integer]
Inserts a carriage return and line feed. If you specify the
optional integer, qli inserts that many blank lines.

tab [integer]
Inserts one horizontal tab into the output line. If you specify
the optional integer, qli inserts that many tabs.

col integer
Begins the next print element in the specified column. If the
number of columns you specify is less than the current column
number, it inserts a carriage return and line feed.

new_page
Inserts a page break into the output file.

value-expression
Specifies the field, variable, quoted string, arithmetic expres-
sion, statistical expression, or other value to be printed. If the
value expression is or includes a database field name, you must
supply a record selection expression when you use the print
statement , and qli must be able to resolve the field in the con-
text of the rse. For more information about value expressions,
see the entry in this chapter for value-expression.

The value expression can be of the form context-variable.*, so
that you can request all the fields from a particular relation
without having to list them all.

Qli accepts the word and as a substitute for a comma in a list
of value expressions. Therefore, print city, state, population of
cities, print city, state and population of cities, and print city
and state and population of cities are equivalent.

query-header
Specifies a column header. By default, gli uses the database
field name as a column header when it returns values. If you
include a value expression that is not a field, or if you want to
give the column a different header for its output, you may spec-
ify the query header in the print list. To create a multi-line
query header, separate each line in the header with slashes.

QLI Statements and Commands

Examples

Print

For example, "Name" / "of ' / "Field" gtacks the words “Name,”
“of,” and “Field” on three separate lines at the top of the col-
umn. To suppress default column header, specify an unquoted
hyphen.

edit-string
Specifies an output format for the value expression. Qli forces
the value expression into the specified format if possible. For
example, print "today” prints the string “today,” but print
"today" using w(9) prints the day of the week.

See Tables 3-4 through 3-6 in the edit-string section of the
field-attributes entry. These three tables present alphabetic,
numeric, and date edit strings. In all cases where the token
integer appears, you can substitute a repetition of the edit
string character. For example, hhhh and h(4) are equivalent.

using form [form-namel
Tells qli to use a form to display records from a relation. If you
do not provide a form name, qli looks for a form with the same
name as the relation in the rse. If it can’t find one, gli returns
an error.

The following query prints all records in the STATES relation:

QLI> /* simple print format */
QLI> print states sorted by state_name

The following query prints a literal value expression:

QLI> print "Jean, approach ramming speed."
Jean, approach ramming speed.

The following query prints the number of populated cities and
uses a query header:

QLI> print count of cities with
CON> population > 0 (“Populated”/“Cities”

The following query prints whatever you ask it to print:

QLI> print *."whatever your heart desires"
Enter whatever your heart desires: chocolate
chocolate

QLI Statements and Commands 3-95

Print

3-96

The following query writes field values from the STATES and
SKI_AREAS to the file shush_boom.dat:

QLI> print state_name, name, city of states cross
CON> ski_areas over state on ’‘shush_boom.dat’

The following query prints field values from records in a stream
created by a for command:

QLI> for states cross ski_areas over state
CON> print state_name, name, city

The following query prints the hexadecimal representation of
Albany’s altitude:

QLI> print altitude using hhhh of cities with
CON> city = ‘Albany’

ALTITUDE

The following query prints today’s date using an edit string:

QLI> print "today" using w(8)" the "dd"th
CON> of "m(1l2)" in the year "y (4)
Thursday the 15th of May in the year 1986

The following query prints the POPULATION field from
CITIES using an edit string to format the number:

OLI> print city, population using z,zzz,zz9 of CON>
cities

CITY POPULATION

Juneau 7,000

Indianapolis 700,000

Montgomery 177,807
}

QLI Statements and Commands

Troubleshooting

See Also

Print

You may encounter the following messages when you use the
print statement:

* Noitems in print list

You must provide a record selection expression or value
expression.

e Can’t open output file

Qli cannot open an output file for a print on filespec com-
mand.

See the entries in this chapter for:

e for

e list

QLI Statements and Commands 3-97

Quit

Quit

Function

Syntax

Example

3-98

The quit command prompts you to either roll back or commit any
updates to databases when you leave qli.

If you have made any updates since your last commit or
rollback command, qli asks if you want to roll back your
changes. If you answer “y” (yes), qli undoes any changes you

made since your last commit and then exits. If you answer “n
(no), it commits the changes and then exits.

If you have not many any changes, qli exits without prompting
you.

If you use a quit command inside a command file and do not

include a “y” or “n” following the quit, qli rolls back your
changes.

quit

The following qli session updates the database, quits, and rolls
back the changes:

Q

% gli

Welcome to QLI

Query Language Interpreter

QLI> ready atlas.gdb

QLI> store river_states

Enter STATE: MA

Enter RIVER: Connecticut

QLI> quit

Do you want to rollback your updates? y

The following qli session does not make any changes, so quitting
results in an exit without prompting:

% gli

Welcome to QLI

Query Language Interpreter

QLI> ready atlas.gdb

QLI> print average length of rivers

QLI Statements and Commands

Quit

LENGTH

1081
QLI> quit

Troubleshooting See the discussion of errors and error handling in Chapter 1 of
the QIi Guide.

See Also See the entries in this chapter for:
¢ exit
* commit
¢ finish

QLI Statements and Commands 3-99

Ready

Ready

Function

Syntax

Options

The ready command attaches a database and opens it for access.
This command must precede other database access in qli.

The ready command automatically starts a transaction that is
not terminated until you commit it or roll it back. Qli automati-
cally starts a new transaction with the next data manipulation
statement that follows the commit or rollback command.

The ready command also opens the database for meta-
data update.

ready filespec [as database-handle]

filespec

Specifies the name of the file that contains the database. The
file specification can contain the full pathname, including the
name of the node on which the database is stored.

If the command language interpreter or shell from which you
invoked qli is case-sensitive, make sure that you type the name
of the database file exactly as it appears when you list the
directory.

If you are in a directory other than the one that contains the
database file, filespec must include the pathname. If the
database is on another node, the filespec must include the node
name and pathname. You can also define a link or logical name
for the database file, and then reference it through either of
those names.

File specifications for remote databases have the formats
shown in the following table.

Table 3-9. Remote Database Access

From

To Syntax

VMS

VMS via DECnet node-name::filespec

VMS

ULTRIX via DECnet node-name::filespec

3-100

QLI Statements and Commands

Ready

Table 3-9. Remote Database Access

From

To Syntax

VMS

non-VMS and non-ULTRIX node-name”Milespec

ULTRIX

VMS via DECnet node-name::filespec

Apollo

Apollo //mode-name/filespec

Everything Else | Whatever is left node-name:filespec

Usage

Example

For example, the following command readies a database in the
directory [public.data] on the VMS system pariah:

QLI> ready pariah: [public.data]lphones.gdb

Make sure that what follows the colon is a valid file specifica-
tion on the target system; use brackets, slashes, and spaces as
appropriate.

database-handle
Specifies a name that can be used to qualify database refer-
ences when you are using multiple databases. If you do not pro-
vide a handle, qli automatically assigns one of the form qli_n,
where n represents a positive integer.

The optional database-handle lets you work with multiple
databases, accessing each when you need it and closing each
with a finish statement as appropriate. This approach saves
system resources.

The database you access may be on another computer in the net-
work. Such a database is called a remote database, and the com-
puter where it is stored is called the remote node. The node you
are using is called the local node. If the database you access is on
the same node as you are, then it is a local database. To access a
remote database, use the full network pathname of the database
file or establish a logical link to it. Once you have readied the
remote database, you can read and write records in the database
as if it were local.

The following example readies a database for access:

QLI> ready atlas.gdb

QLI Statements and Commands 3-101

Ready

Troubleshooting

3-102

The following example readies two databases for access, states
the explicit path to the database file for one database, and pro-
vides a database handle for each. The final line finishes one of the
databases:

QLI> ready /usr/igor/datafiles/atlas.gdb as atlas
QLI> ready mailing_list.gdb as mailing

QLI> finish atlas
The following example readies a local and a remote database:

QLI> ready pariah::[doncikov.datafiles]atlas.gdb
QLI> ready mailing_list.gdb

InterBase may not be able to find the database file you think you
want to ready. The database file might not exist anymore, might
not have the name you specified, or might not be where you
thought it was. In any of these cases, check the database file
name and location.

InterBase may not be able to ready a remote database due to a
communication problem with the remote node. If that is the prob-
lem, make sure the remote servers are running.

To use an InterBase database you need read and write access to
the files. You may not have the right kind of access to the file. See
your system administrator.

You may encounter the following message when you use the
ready command:

® Operating system directive failed
-no active servers (library/MBX manager)
-communication error with journal "
journal_directory_name"

This message means that journaling has been enabled for the
database you tried to ready, but no one has started the jour-
nal. Use journal to start the journal.

You may encounter the following message on an APOLLO:

* Database error: I/0 error during "ms_$mapl" operation for
file "dbfile" -name not found (OS/naming server).

QLI Statements and Commands

Ready

The database you tried to ready does not exist where you
thought it did, is unavailable for some reason, or does not
exist at all. Check the pathname and try again.

See Also See the entry in this chapter for finish.

QLI Statements and Commands 3-103

Rename Procedure

Rename Procedure

Function

Syntax

Options

Example

Troubleshooting

3-104

The rename procedure command changes the name of an ex-
isting procedure.

rename procedure [database-handle.]old-name
[to] [database-handle.]new-name

[database-handle.]old-name
Specifies the name of the procedure you want to change. If you
specify the optional database handle, qli renames the proce-
dure from that database.

[database-handle.] new-name
Specifies the new name of the procedure. The procedure name
can be up to 31 characters and can contain alphabetic charac-
ters (A—Z and a—z, all stored as uppercase), numeric charac-
ters (0—9), underscores (_), and dollar signs ($). The procedure
name must start with an alphabetic character.

Unless you supply a database handle, gqli creates the new pro-
cedure in the most recently readied database. If a procedure of
that name exists in that databases qli reports an error.

The following command renames a procedure:

QLI> rename procedure capital_info to capital_city
QLI>

You may encounter the following messages when you use the
rename procedure statement:
¢ Procedure name <name> is in use
Choose another name.
* Procedure name over 31 characters
" Choose a shorter name.
* gds_3$create_blob failed

InterBase could not create the field in which the procedure
text is stored. Try again.

QLI Statements and Commands

See Also

Rename Procedure

You may get the following errors when you execute a procedure:

* Procedure <name> is undefined

The procedure does not exist as specified. Type show
procedures for a list of procedures.

* Procedure <name> not found

The procedure does not exist as specified. Type show
procedures for a list of procedures.

See the entries in this chapter for:

* copy procedure

¢ define procedure
¢ edit procedure

* delete procedure

QLI Statements and Commands 3-105

Repeat

Repeat

Function

Syntax
Options

Usage

3-106

The repeat statement lets you execute a gqli statement multiple
times.

repeat integer-expression gli-statement

integer-expression
Specifies the number of repetitions. If integer-expression is not
an integer, qli truncates the fractional part. The token integer-
expression does not have to be a literal; instead, it can be a
prompting expression, an arithmetic expression, or even a field
name.

gli-statement
Any of the qli statements or any procedure containing state-
ments. You cannot use a command or a procedure containing
commands as the action of an if-else statement.

You can intermix the GDML and SQL variants of gqli in a
repeat statement.

If you want to include a procedure in a repeat statement, enclose
it in a begin-end statement. Otherwise, only the first statement
in the procedure repeats.

If, at any time during the repeated operations, you decide to stop,
type the end-of-file character (system-dependent). Qli then stops
whatever it is doing and displays the following message:

Error: execution terminated by signal

Qli does not complete the operation that was interrupted. For
example, suppose you decide to store five new SKI_AREAS.
After storing two records, you begin the third. However, you
make a mistake while typing the value of the second field for the
third record. You type the end-of-file character. Qli stores the
first two records, but does not store the third record.

QLI Statements and Commands

Examples

Troubleshooting

See Also

Repeat

The following example specifies that the store statement is to be
repeated five times, thereby causing gli to prompt for field values
for five records:

QLI> repeat 5 store ski_areas

|/

The following statement prompts for the number of repetitions:

QLI> repeat*. 'number of items’
CON> store ski_areas

The following statement repeats a procedure five times:

QLI> repeat 5 begin :procedure end

See the discussion of errors in of the QIi Guide.

Any of the gli statements discussed in this chapter.

QLI Statements and Commands 3-107

Report

Report

Function

Syntax

Options

3-108

The report statement invokes qli’s report writer.

report rse [on 'filespec’|to shell-command]
[set report_name = query-header]
[set columns = n]
[set lines = n]
[at top of report [print] print-list]
[at bottom of report [print] print-I1ist]
[at top of page [print] print-list]
[at bottom of page [print] print-list]
[at top of database-field [print] print-1ist]
[at bottom of database-field [print] print-
list]
end_report [on ’filespec’|to shell-command]
print-list::=print-element-commalist

print-element::={format-token|qualified-value}
format-token: :={space [integer] |skip
[integer] |tab [integer]|col integer|

new_page |column_ header|report_header}

qualified-value: :=value-expression [(query-
header|-)][using edit-string]

query-header: :=quoted-stringl/quoted-string]

rse
Creates the record stream to be reported.

on ’‘filespec’
Sends the output to the named file, rather than writing it to
your monitor. This clause can appear immediately after the
report statement or after the end_report statement.

to shell-command
Sends the output to standard input of the shell or command
interpreter command, rather than writing it to your screen.
These commands typically send the output to a printer, for

QLI Statements and Commands

Report

example print, lpr, Ipt, prf, and ’prf -npag’. Note that if you
include a switch on the shell command, you must quote the
entire command. This clause can appear immediately after the
report statement or after the end_report statement.

set report_name = query-header
Names the report. The query header is one or more quoted
strings separated by slashes.

set columns = n
Specifies the width in mono-spaced characters for the output
device. Reports printed on standard U.S. (8-1/2 by 11 inch) or
European (A4) paper should not exceed 75 columns.

set lines = n
Specifies the length in lines of the report. Reports printed on
standard U.S. (8-1/2 by 11 inch) or European (A4) paper should
not exceed 60 lines in length.

at top of report print print-1ist
Specifies a title to be printed at the beginning of the report. If
you omit this statement, qli prints the column headers at the
top of the report along with the report name if you specified
one.

at top of page print print-list
Specifies a title to be printed at the top of every page. If you
omit this statement, qli prints column headers at the top of
each page. If you use this statement, and you want default
headers or user-specified headers to print, include the
column_header format token.

at bottom of page print print-list
Specifies a title to be printed at the bottom of every page.

at bottom of report print print-list
Specifies a title to be printed at the end of the report.

at top of database-field print print-1list
Provides a control break and the title to print for that break.
The rse at the beginning of the report must include the data-
base-field, and the database-field must be a sort field.

at bottom of database-field print print-1ist
Provides a summary of a control group and an expression to
print for that break. Typically, the at bottom matches an at

QLI Statements and Commands 3-109

Report

3-110

top and calculates a total or aggregate expression for the con-
trol group.

print-statement
Provides a detail line which prints once for every record.

space [integer]
Inserts one blank horizontal space in the output line. If you
specify the optional integer, gli inserts that many blank
spaces.

skip [integer]
Inserts one blank vertical line. If you specify the optional inte-
ger, gqli inserts that many blank lines.

tab [integer]
Inserts one horizontal tab into the output line. If you specify
the optional integer, gqli inserts that many tabs.

col integer
Begins the next print element in the specified column.

new_page
Inserts a page break into the output.

column_header
Specifies that the lines of the query header, either default or
user-specified, should appear at the top of each column. By
default, column headers appear at the top of each page. If you
format the top of page yourself using the at top of page state-
ment, and you want your headers to appear, you should include
the column_header format token.

report_header
Specifies the report name you specified. If you want to print the
report name at the top of each page, include the report_h-
eader format token in the at top of page statement. If you for-
mat the first page of the report yourself, you should also specify
the report header.

value-expression
Specifies the field, variable, quoted string, arithmetic expres-
sion, statistical expression, or other value to be printed. If the
value expression is a database field name or includes one, you
must supply a record selection expression in the print state-
ment (do not use a for...print format), and gli must be able to

QLI Statements and Commands

Examples

Report

resolve the field in the context of the rse. For more information
about value expressions, see the entry in this chapter for value-
expression.

query-header
Specifies a column header. By default, gqli uses the database
field name as a column header. If you include a value expres-
sion that is not a field, or if you want to use a non-standard col-
umn header, you may specify a query header in the print list.
To create a multi-line query header, separate the lines of the
header with slashes. For example, "Name" / "of"'/ "Field" stacks
the words “Name,” “of,” and “Field” on three lines at the top of
the column. To suppress the creation of a default column
header, specify an unquoted hyphen.

edit-string
Specifies an output format for the value expression. Qli forces
the value expression into the specified format if possible. For
example, print "today"” prints the string “today,” but print
"today” using w(9) prints the last day of the week.

See the tables in the edit-string section of the field-attributes
entry. These tables present alphabetic, numeric, and date edit
strings. In all cases where the token integer appears, you can
substitute a repetition of the edit string character. For exam-
ple, hhhh and h(4) are equivalent.

The following statements report on records in the CITIES rela-
tion with control breaks by state:

QLI> report cities with population not missing
CON> sorted by state

CON> set columns = 75

CON> set lines = 55

CON> set report_name =

CON> 'C I TIES BYSTATE'

CON> at top of state print state

CON> print city, population, altitude, latitude,
CON> longitude

CON> end_report

QLI Statements and Commands 3-111

Report

Troubleshooting

See Also

3-112

The following report joins records from the CITIES and STATES
relation to display data from cities with populations exceeding

1,000,000:

QLI> report cl in cities cross s in states over
CON> state cross

CON> c2 in cities over state with

CON> c2.population > 1000000 sorted by s.state
CON> set report_name = "A Report of Cities" /
CON> "From States With Very Large Cities" /

CON> "In the United States"

CON> at top of report print col 54, "today" using
CON> dd-mmm-yvyyy, skip, report_header

CON> at top of page print col 57, "Page", col 62,
CON> running count (-) using Z(9),

CON> skip, column_header

CON> at top of state print s.state_name

CON> print cl.city, cl.population

CON> at bottom of state print total cl.population,
CON> new_page

CON> at bottom of report print total cl.population
CON> end_report on "cities.out"

See the discussion of errors and error handling in Chapter 1 of
the Qli Guide.

See the chapter on the report writer in the QIi Guide.

See also the entry in this chapter for print.

QLI Statements and Commands

Restructure

Restructure

Function

Syntax

Options

Examples

Troubleshooting

See Also

The restructure statement lets you copy data from one relation
to another or from one database to another. Qli automatically
matches up fields and copies values from one relation to another.

[database-handle.]lrelation name = rse

database _handle.relation_name
Specifies the relation to which you want to assign values. The
optional database handle is useful if you are using multiple
databases with overlapping relation names.

rse
Creates a record stream that serves as the source of values for
relation-name.

The following example assumes that you have defined a new rela-
tion, CITY_STATES, into which you want to store cities with
populations greater than 500,000. The relation definition follows,
with fields from both the CITIES and STATES relations:

QLI> define relation city_states
CON> city, state, population

CON> define relation city.states
CON> city, population, state_name

The following statement loads the new relation:

QLI> city_states = cities cross states over state
CON> with population > 500000

See the discussion of errors and error handling in Chapter 1 of
the QUi Guide.

See the entry in this chapter for assignment.

See also the discussion of restructuring in the chapter on defining
metadata in the Qi Guide.

QLI Statements and Commands 3-113

Revoke

Revoke

Function

Syntax

Options

The SQL revoke command takes privileges away from a user for
a designated table or view. Only the user who grants a privilege
can revoke that privilege. A revoke statement does not effect
privileges a user may have received from other grant statements.
The revoke statement has a cascading effect on any privileges
that were passed on through the with grant option clause in the
grant statement.

revoke privilege-comma-1list on relation-
name| view-name from userid-comma-1list

privilege-comma-1list
Specifies the following operations:

Privilege

Authority

All

Selects, deletes, inserts, updates

Select

Retrieves records from table or view

Delete

Eliminates records from table or view

Insert

Stores new records in table or view

Update

Changes value of one or more fields in existing table or view

Examples

3-114

relation-name
Specifies the relation from which you revoke privileges

view-name
Specifies the view from which you revoke privileges.

userid
Specifies which authorized users have access to privileges for a
table or view.

The following example takes the select privilege away from a
user for the CITIES relation:

QLI> revoke select on cities from julie;

QLI Statements and Commands

Troubleshooting

See Also

Revoke

In the following example, John grants Julie select and delete
privileges on a relation that he created, and he gives her the abil-
ity to pass the grant privilege to other users:

QLI> grant select, delete on rivers to julie with
CON> grant option;

Julie can now pass the select privilege for the RIVERS relation
on to Dana:

QLI> grant select on rivers to dana;

If John decides to revoke Julie’s select privilege for the
RIVERS relation, the revoke cascades through Julie‘s grant
statement and also takes away Dana’s select privilege:

QLI> revoke select on rivers from julie;

You may encounter the following errors when you use the grant
command:
* expected relation name, encountered “string”
You typed the relation name incorrectly.
* expected on, encountered “string”
You typed a privilege incorrectly.

* QLI error from database “filename”
unsuccessful metadata update
-STORE RED$USER_PRIVILEGES failed on grant
-action cancelled by trigger (1) to preserve data integrity

You do not have privilege to grant the privilege or privileges
you tried to grant.

See the entry in this chapter for grant.

QLI Statements and Commands 3-115

Rollback

Rollback

Function

Syntax

Options

3-116

The rollback command ends a transaction and undoes all
changes made to the database since the most recent transaction
started.

The rollback command does not affect the define, delete,
drop, and modify metadata commands.

rollback [database-handle-commalist]

database-handle-commalist
Specifies the database to roll back. A rollback command with-
out the optional database handle affects all open databases. It
causes InterBase to undo all changes to data.
Rollback also flushes out all modified buffers and closes any
record streams that are open.

If you assign a database handle when you ready the database,
you can use the handle to limit the effect of the rollback to spe-
cific databases. When you access more than one database in
qli, InterBase automatically starts up separate subtransac-
tions for each database. However, these appear to be a single
transaction. The optional database handle lets you control
these subtransactions explicitly by letting you commit or roll
back transactions by database.

If you forgot to assign a database handle when you readied the
database but later have need for one, you can use the default
handle. Qli assigns a default handle if you have not specified
one. To find out the default database handle assigned by qli
type the following :

QLI> show databases
Database "atlas.gdb" readied as QLI_O
Page size is 1024 bytes. Current allocation
is 156 pages.

Qli displays the names of all available entities, including data-
bases and handles. The default handles are of the form “QLI_n,”
where n is a numeric integer.

QLI Statements and Commands

Example

Troubleshooting

See Also

Rollback

Supply this handle as an argument to the rollback command:
QLI> rollback gli_0

The following example performs some unspecified data manipu-
lation activities and then undoes the changes. Consequently the
changes are not written to the database:

QLI> ready atlas.gdb
4

QLI> rollback
A rollback cannot fail.
See the entries in this chapter for:

* commit
¢ finish

* prepare
* quit

QLI Statements and Commands 3-117

Select

Select

Function

Syntax

Options

3-118

The select statement finds the record(s) of the relations specified
in the from clause that satisfy the given search condition.

select-expression [ordering-clause]
ordering-clause ::= order by sort-key-commalist

sort-key ::= [ascl|desc] [exactcase|anycase]

select-expression
Specifies the selection criteria. See the manual page for select-
expression.

ordering-clause
Returns the record stream sorted by the values of one or more
database-fields.

You can sort a record stream alphabetically, numerically, by
date, and by any combination of these. The ordering-clause lets
you have up to 40 sort keys.

Each sort key can specify whether the sorting order of the sort
key is asc (the default order for the first sort key) or desc.
Unlike the GDML version of qli, the sorting order is not
“sticky.”

sort-key
Specifies the field or fields on which you want to sort. You can
sort a record stream alphabetically, numerically, by date, and
by any combination of these. The sort-clause lets you have as
many sort keys as you want.

ascending|descending
Each sort key can specify whether the sorting order is ascend-
ing (the default order for the first sort key) or descending.

The sorting order is “sticky”; that is, if you do not specify
whether a particular sort key is ascending or descending,
InterBase assumes that you want the order specified for the
most recent key. Therefore, if you list several sort keys, but

QLI Statements and Commands

Examples

Select

only include the keyword descending for the first key, Inter-
Base sorts all keys in descending order.

exactcase|anycase
The sort key can specify whether a sort is case sensitive or not.
A case sensitive sort (exactcase) sorts capital letters before
lowercase letters. A case insensitive sort (anycase) does not.
The default is exactcase.

The sorting order is “sticky”; that is, if you do not specify
whether a particular sort key is exactcase or anycase,
InterBase assumes that you want the order specified for the
most recent key. Therefore, if you list several sort keys, but
only include the keyword exactcase for the first key,
InterBase sorts all keys by exactcase.

The following query returns cities in Massachusetts:

QLI> select city, state, population
CON> from cities where state = ’'MA’

The following query includes an ordering clause with two sort
keys:

QLI> select city, state, population -
CON> from cities where state = 'MA’ order by -
CON> city, state

The following example joins the relations CITIES and STATES
on the basis of the equality of values in STATE:

QLI> select c.city, c.population, s.state_name -
CON> from cities ¢, states s where -
CON> c.state = s.state order by s.state

The following query selects cities that might be on rivers:

QLI> select city, state from cities where
CON> state in (select state from river_states)

This query selects cities that might be on a longer than average
river:

QLI> select city, state from cities where

CON> state in (select state from river_states where
CON> river in (select river from rivers where
CON> length > (select avg (length) from rivers)))

QLI Statements and Commands 3-119

Select

Troubleshooting You may encounter the following message when you use the
select statement:

No items in print list

You must provide something to print. Select * or select [alias].*
selects all fields.

See Also See the entry in the previous chapter for select expression.

3-120 QLI Statements and Commands

Set

Function

Syntax

Options

Set

The set command lets you change various environmental fea-
tures of gli.

set [no] {blr|columns integer|

continuation “string”lecho|form|lines integer
|prompt “string”|semicolon|statistics|
matching_ language “string”}

blr
Displays the binary language representation, or BLR, of the
query before displaying the results of the query.

You can use the blr option to develop programs that use the call
interface. For example, you can develop queries using qli, take
the generated requests, and modify them as needed by your
application. However, qli first parses the query for syntactic
accuracy before sending off the request. If there is an error in
your query, qli displays the appropriate error message and
does not generate any BLR.]

column integer
Sets the maximum width of a print line.

continuation "string"
Replaces the CON> continuation prompt with one of your own.
This option does not change the QLI> prompt; use the set
prompt command to change that prompt.

echo
Displays procedure commands and statements as a procedure
is executed.

form
Tells qli to use the form defined for a relation whenever it
prints, modifies, or stores records in that relation.

lines integer
Lets the number of lines that qli assumes will appear on the
output device.

QLI Statements and Commands 3-121

Set

Examples

3-122

prompt "string"
Replaces the QLI> prompt with one of your own. This option
does not change the CON> continuation prompt.. Use the set
continuation command to change that prompt.

semicolon
Changes qli’s line continuation behavior. Without the
semicolon option set, you must break a command in the mid-
dle of a clause or at a comma, or use a hyphen. With the semi-
colon option set, qli does not execute a command until it
encounters a semicolon. When you turn off this option, be sure
you type the semicolon at the end of the command:

QLI> set no semicolon;

statistics
Displays the following system statistics after:
¢ Number of read requests
* Number of write requests

¢ Number of requests for data which may be serviced in
cache

¢ Number of requests for updates which may be serviced in
cache

¢ Elapsed time

e CPU time

¢ Memory usage

¢ Database page size

¢ Database buffers used

matching_ language “string”
Defines the default pattern language for the matching opera-
tor.

The following commands set the blr switch and execute a query:

QLI> set blr

QLI> print states

0000 blr_version4,

< BLR for query is printed >
< display of STATES records >

QLI Statements and Commands

Troubleshooting

See Also

Set

The following commands set the statistics switch and execute a
query:

QLI> set statistics
QLI> print city, state of first 2 cities
< display of first 2 CITIES records >
Statistics for database "atlas.gdb"
reads = 2 writes = 0 fetches = 7 marks = 0
elapsed = 0.06 cpu = 0.05 mem = 55296

The following example changes the behavior of matching:

QLI> print city of cities with city matching “A?”
QLI> set matching_language “-s(A=[A-z]0 = [0-9] -
CON> a = [a-z]?=?*"

QLI> print city of cities with city matching “A”

You may encounter the following message when you use the set
command:

Expected set option, encountered "invalid-option”

Qli did not recognize the set option you chose. Check the Syntax
section above for the supported option.

See the entry in this chapter for show.

See the section on matching in the entry for Boolean expression
in Chapter 2.

QLI Statements and Commands 3-123

Shell

Shell

Function

Syntax

Options

Examples

Troubleshooting

See Also

3-124

The shell command lets you execute shell commands from the
qli environment. This command is supported only for UNIX and
Apollo environments. Use the spawn command on VMS systems.

shell ["shell-command"]

shell-command
A shell command enclosed in single () or double () quotation
marks.

If you do not issue a shell command, gqli puts you in a shell.
Type the end-of-file character to escape from the shell back to
qli.

The following command escapes from qli and deposits you in a
shell:

QLI> shell ’‘sh’
%

Type the end-of-file character to return to qli.
The following command checks the time from within qli:

QLI> shell ’'date’
Tue Apr 23 13:54:22 EDT 1986

You may encounter the following message when you use the
shell command:

2(sh) "string" - name not found (OS /naming server)
The string you typed was not a command understood by the shell.
See also the discussion of errors in Introduction to the Qli Guide.

See the entry in this chapter for spawn.

QLI Statements and Commands

Show

Function

Syntax

Options

Show

The show command displays information about data definitions,
procedures, statistics and other information from the database.

On all show commands except system relations, qli displays
only user metadata; that is, metadata that has a value other than
1 or 2 for the RDB$SYSTEM_FLAG in the appropriate system
relation. See the Data Definition Guide for more information
about the system_flag option on most data definition state-
ments.

If the show command references anything other than one of the
listed options, gli assumes that you mean a procedure and looks
for a procedure with that name. If it cannot find a procedure with
that name, qli returns a message that the procedure was not
found.

show {all |database-handle | databases | database
database-handle | field relation-name.field-name
| fields [for relation relation-name] |

filters [“string”] |

forms [for [database] database-handle |
function[s] | global field field-name |

global fields [for database database-handle] |
indexes [for [database-handle.]relation-name)
Imatching_ language|procedure procedure-name |
procedures | ready | relation-name | relations |
security classes | system [relations] |

triggers [for database database-handle] |
triggers for [relation] relation-name| variables
version |views}

all
Displays the file specification and handle for all readied data-
bases, relation name, and field names and datatype for each
relation.

database-handle
Displays everything about the named database, including a
database description if one exists. The handle must have been

QLI Statements and Commands 3-125

Show

3-126

assigned in the ready statement, or may have been assigned
automatically by qli.

databases
Displays the file specification, handle, page size, allocation,
and database description of all readied databases.

database database-handle
Displays the file specification and handle for all the database
identified by the handle, relation names, and field names and
datatype for each relation.

field relation-name.field-name
Displays the attributes of the field as it occurs in the named
relation.

fields [for relation relation-name]
Displays all fields and datatypes for each relation in a readied
database. If you specify a relation-name, it displays the fields
and datatypes for the named relation.

filters [“string”]
Lists all blob filters. If you include a string naming the filter, it
shows the named filter.

forms [for [database] database-handle
Displays the names of forms for each readied database. If you
include the optional database handle clause, it only displays
the forms for the named database.

function
Lists all information about a particular function.

functions
List the function names in all the open databases.

global field field-name
Lists the description of the named global field.

global fields [for database database-handle]
Lists the global fields for all readied databases, or, if you spec-
ify the optional database handle, only the global fields for that
database

indexes [for [database-handle.]relation-namel
Displays for each relation the name of any index that has been
defined, the fields that comprise the index, and whether or not

QLI Statements and Commands

Show

it is a unique index, or a message indicating that no relation
was defined. If you specify the relation name, it lists the
indexes only for that relation.

” s

Qli also accepts the correct form of the plural for “index,” “indi-
ces.”

matching language
Displays the current matching language.

procedure procedure-name
Displays the file specification of the database where procedure-
name is stored and the text of the procedure.

This option is essentially the default. If you ask gli to show you
something it does not understand, qli assumes that the desired
item is a procedure.

procedures
Displays the names of procedures for all readied databases.

ready
Displays the file specification and handle of all readied data-
bases.

relation-name
Displays the field names and datatypes for the specified rela-
tion. You can also qualify the relation name with a database
handle.

relations
Displays the names of relations for each readied database.

security classes
Displays security classes defined for the database and objects
with which they are associated.

system [relations]
Displays the names of the system relations for each readied
database.

triggers [for database database-handle]
Displays the triggers for all relations in all readied databases,
or, if you specify the optional database handle, only for the rela-
tions in the named database.

QLI Statements and Commands 3-127

Show

Examples

3-128

triggers for [relation] relation-name
Displays the triggers for the specified relation.

variables
Displays the names of declared variables.

version
Displays the software release number for qli, and the version
numbers of the access method being used. For network connec-
tions, qli lists all participating versions of InterBase.

views
Displays the names of views for each readied database.

The following commands ready a database and then ask for infor-
mation about all entities in the database:

QLI> ready atlas.gdb

QLI> show all

< display of all metadata information for readied
database >

The following command asks for version information:

QLI> show version
QLI, version "S3-I3.0L"
Version(s) for database "atlas.gdb"
InterBase/sun4d (access method, version "S4-
T3.0K"
InterBase/sun4 (remote server), version "S4-
T3.0K/tcp (yuppie)"
InterBase /sun (remote interface, version
"S3-I3.0/tcp (pisces)"

QLI>

The following command asks for information about readied data-
bases:

QLI> show ready
Database "/usr/castor/databases/atlas.gdb" readied
as QLI_O
Page size is 1024 bytes. Current allocation is
0 pages.
Database description:

QLI Statements and Commands

Troubleshooting

See Also

Show

The atlas database is the sample database used
throughout the documentation set. It is based on a
North American atlas and gazeteer. Type "show
relations" at the QLI prompt for a listing of the
relations in the database.

You may encounter the following messages when you use the
show command:

e No databases are currently ready

Qli cannot display anything because there is nothing to dis-
play. Ready a database and try the command again.

® Procedure <procedure-name> not found

Qli could not find a procedure with the name you typed. Type
show procedures for a list of procedures. Likewise, if you
reference a relation from a database other than the one(s)
you have readied, qli assumes that the relation name is a
procedure name. If it cannot find a procedure with that
name, qli returns a message that the procedure was not
found.

See also the discussion of the show command in the section on
help in the introductory chapter of the Qli Guide.

QLI Statements and Commands 3-129

Spawn

Spawn

Function

Syntax

Example

Troubleshooting

See Also

3-130

The spawn command lets you “escape” from qli to a VMS sub-
process. When you are finished with DCL commands, log out of
the subprocess to return to qli.

spawn

The following command escapes from qli and deposits you at
DCL level:

QLI> spawn
$

Logout to return to qli.
See the discussion of errors in Chapter 1 of the Qli Guide.
See the entry in this chapter for shell.

QLI Statements and Commands

Store

Function

Syntax

Options

Examples

Store

The store statement inserts a new record into a relation.

Standard form:

store relation-name [using statement]

Form format:

store relation-name using form [form-name]

relation-name
Specifies the relation into which you want to store a new
record. If you specify only relation-name without an assign-
ment, qli prompts you for field values.

statement
A qli statement.

If you specify relation-name and using, you make assignments
to fields using qli statement. In this case, you need the begin-
end command if there is more than one field to which you must
assign a value.

using form [form-name]
Tells qli to use a form for assignments instead of statements.
If you do not supply a form name, qli looks for a form with the
same name as the relation. Failing to find that, it returns an
error, or if you want to include more than one statement.

The following example stores a record using qli’s automatic
prompting:

QLI> store ski_areas
Enter NAME: Reedy Run
Enter TYPE: N

Enter CITY: Groton
Enter STATE: MA

QLI Statements and Commands 3-131

Store

Troubleshooting

See Also

3-132

The following example stores a record, but uses a begin-end
statement to structure a compound statement for assigning val-
ues to each field:

QLI>
CON>
CON>
CON>
CON>
CON>
CON>

store ski_areas

begin

name = ’'Moose Pond’
type = 'N’

city = ’'Dixville Notch
state = 'NH’

end

See the entry in this chapter for the assignment statement.

See the entry in this chapter for:

* assignment

* begin-end

QLI Statements and Commands

Then

Function
Syntax

Options

Example

Troubleshooting

See Also

Then

The then statement lets you sequence qli statements.

gli-statement then gli-statement

gli-statement
Any of the qli statements or any procedure containing state-
ments. You cannot use a command or a procedure containing
commands as the action of an if-else statement.

The following example modifies a field value in several records,
but displays each record before prompting for a new field value:

QLI> for cross_country with state = 'VT'
CON> print area_name, food then modify food

You may encounter the following message when you use the then
statement:

Expected statement, encountered "command”
You cannot use a command with the then statement.

See also the discussion of errors and error handling in Chapter 1
of the Qli Guide.

QLI Statements and Commands 3-133

Update

Update

Function

Syntax

Options

Example

3-134

The update statement changes the values of one or more fields
in a record in a relation.

You cannot modify records directly from a join: you must modify
them through each participating relation separately. You can
modify records from a view if the view is comprised of a single
relation (without a reflexive join) or if the database designer
included a modify trigger.

update relation-name set assignment-commalist
[where predicate]

assignment ::= database-field=scalar-expression

relation-name
Specifies the relation that contains the record you want to
update.

assignment
Assigns the scalar-expression to database-field.

predicate
Selects the record to modify. If you provide a search condition
with the optional where-clause of the predicate, InterBase
updates the listed fields in the record(s) selected from relation-
name. If you do not provide a search condition, InterBase
updates all records in relation-name.

The following statement modifies the altitude of all cities:

QLI> update cities set altitude = altitude - 10

The following statement modifies the altitude of all cities in Cal-
ifornia and Washington:

QLI> update cities -
CON> set altitude = altitude - 100 -
CON> where state in ("CA", "WA");

QLI Statements and Commands

Troubleshooting

See Also

Update

The following statement elevates all cities in New York and
changes the state code to “NA” (New Amsterdam):

QLI> update cities -
CON> set altitude = altitude * 1.1, state = 'NA’ -
CON> where state = ’'NY’

See the entry for the assignment statement.
See the entries in this chapter for:

¢ predicate

e select

QLI Statements and Commands 3-135

A

abort
QLI 3-3
accept 3-4
add field 3-6, 3-89
Aggregate function 2-22, 2-25
Aliases 2-20, 3-39
all
grant privilege 3-69
QLI 3-125
alter table
QLI 3-6
any
QLI 2-2
Apollo
shell 3-124
Arithmetic expression
QLI 2-27

asc (ascending) sort order 3-118

ascending index 3-17
Assignment statements
using 3-7
Asterisk
edit all 3-49
print 2-20, 3-94

wildcard 2-5
B
begin-end block

definition 3-10
between

QLI 2-3,2-9
Blob

searching 2-4
Blob filter

showing 3-126
blr

setting in QLI 3-121
Boolean expression
QLI 2-2

C

Case sensitivity
containing 2-4
matching 2-5
starting with 2-7

col 3-94

Column
headings 3-94, 3-110
print width 3-121

column_header 3-110

commit
QLI 3-12
two-phase 3-91

comparison
GDML 2-3,2-10

Concatenation operator 2-28

Constant expression
QLI 2-21

containing
QLI 24

Context variable
QLI 2-14, 2-28

Continuation prompt in QLI 3-121

copy procedure 3-14

create database
QLI 3-15

create index
QLI 3-17

create table
QLI 3-19

create view
QLI 3-21

D

Database
closing 3-63
creating 3-15
defining with QLI 3-26
dropping 3-45
field expression 2-28
handle 3-12, 3-91, 3-116
local 3-101
readying 3-100

Index- 1

remote 3-101

showing open 3-125
Datatype

overview 3-56

scale 3-57

size and precision of 3-24
declare 3-23
define database

QLI 3-26
define field

QLI 3-28
define index

QLI 3-30
define procedure 3-33
define relation

QLI 3-36
delete metadata 3-41
delete procedure 3-43
delete relation 3-39, 3-42
Deleting records

QLI 3-39
desc (descending) sort order 3-118
descending index 3-17
distinct

select option 2-23
drop database

QLI 3-45
drop field 3-89
drop table

QLI 3-47

E

echo 3-121

edit 3-49

edit procedure 3-51
edit_string 3-58
End-of-file characters 3-55

erase 3-53
Errors
using abort in 3-3
exists
QLI 2-10
exit

Index-2

F

QLI 3-55

Field

adding with modify relation 3-89

attributes 3-56

defining 3-28

deleting 3-41

dropping 3-89

modifying with modify field 3-86

modifying with modify relation 3-
89

query name 3-61

showing 3-126

updating 3-134

using in QLI 2-19

values 3-7, 3-134

File specifications

database 3-26

finish

QLI 3-63

first

GDML 2-13, 2-29
QLI 2-13,2-29

Footer 3-109

for

QLI 3-65

for_form 3-67
format using 2-29
Forms

modifying data with 3-84
printing 3-93

setting in QLI 3-121
storing data using 3-131

Function

G

showing 3-125

Global field

showing 3-126

grant 3-69
group by 2-25

H

having 2-26
help 3-71

Help in QLI 3-71
Hyphen 3-95

I

if-else 3-74

in
SQL 2-11, 2-14

Index
creating 3-17
defining 3-30
deleting 3-41
dropping 3-46
modifying 3-87
multi-segment 3-30
restrictions 3-30
showing 3-126
single-segment 3-31
unique 3-30

insert
QLI 3-79

Insert privilege 3-69

J

Joining relations
deleting 3-39, 3-53
modifying 3-134

L
like
QLI 2-11
Line
continuation in QLI 3-122
length 3-109
number of 3-121

M
matching

GDML 2-5
matching_language 3-127

Metadata
copying 3-113
restructuring 3-113
rollback exclusion 3-116
Missing values
GDML 2-7
modify 3-84
modify field
QLI 3-86
modify index
QLI 3-87
modify relation
QLI 3-89
Modifying data
QLI 3-7,3-113, 3-134
Multi-segment index 3-30

N

new_page
print option 3-94
report option 3-110

Nodes 3-101

not null 3-20

Numeric literal expression
QLI 2-30

P

Page size
overriding default 3-15
when printing report 3-109
Percent sign 2-11
Predicate expressions 2-9
prepare
QLI 3-91
print 3-93
Procedures in QLI
aborting 3-3
copying 3-14
defining 3-33
deleting 3-39
echoing 3-121
editing 3-51
renaming 3-104

Index- 3

showing 3-125
Projecting 2-17

see also reduced to
Prompts in QLI 3-122

Q
QLI
exists 2-10
expressions 2-1
finish 3-63
first 2-13, 2-29
for 3-65
grant 3-69
group by 2-25
having 2-26
help 3-71
in 2-11, 2-14
like 2-11
query_name 3-61
Question mark 2-5
quit 3-98
Quoted string
QLI 2-30

R

ready
QLI 3-100
remote databases 3-26
showing 3-127
Record
selecting in QLI 3-118
Record selection expression
QLI 2-13
reduced to
GDML 2-17
Relation
adding existing field 3-89
adding new field 3-89
defining in DDL 3-33
deleting in QLI 3-39
showing 3-125
Relation clause 2-14
Remote database

Index-4

file specification 3-100
repeat

QLI 3-106
report

QLI statement 3-108
Report writer

overview 3-108
report_header 3-110
restructure 3-113
revoke 3-114
rollback

QLI 3-116
running count 2-31
running total 2-31

S

Scalar expressions 2-19
Security
creating tables and 3-20

see also grant, revoke 3-20

security_class

showing 3-127
select

SQL 3-118
Semicolon 3-122
set 3-121
set columns 3-109
set lines 3-109
set semicolon 3-122
shell 3-124
show

QLI 3-125
Single-segment index 3-31
skip 3-94
sorted by

GDML 2-17
Sorting records

SQL 3-118
space

print option 3-94

report option 3-110
starting with

GDML 2-7

Statistical expressions 2-31
Statistical functions
QLI 2-22
Statistics of database 3-125
store
defining in QLI 3-131
Storing data
QLI 3-7
using forms 3-131
Substring 2-5, 2-11
System relations/variables
displaying 3-125
rdb$user_name 2-32
showing 3-125

T

tab
print option 3-94
report option 3-110
Table
creating 3-19
dropping 3-47
then 3-74,3-133
Title of reports 3-109
Transaction
preparing 3-91
quitting 3-98
readying 3-100
rolling back 3-116

starting/stopping 3-55, 3-98

Trigger

showing 3-127

views 3-53, 3-79
Two-phase commit 3-12, 3-91

U
Underscore 2-11
unique
index option 3-30
QLI 2-8
UNIX
shell 3-124
update

QLI 3-134
Username expression
GDML 2-32

\"

Value expressions
QLI 2-27

version 3-128

View
deleting 3-53
dropping 3-48
modifying 3-84, 3-134
showing 3-128
storing data through 3-79

VMS
DCL 3-130

A\
where
QLI 2-24
Wildcard characters 2-5, 2-11
with
QLI 2-16

